ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3764
  4. Cited By
Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective

Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective

14 February 2012
J. Textor
Maciej Liskiewicz
    CML
ArXiv (abs)PDFHTML

Papers citing "Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective"

13 / 13 papers shown
Title
Practically Effective Adjustment Variable Selection in Causal Inference
Practically Effective Adjustment Variable Selection in Causal Inference
Atsushi Noda
Takashi Isozaki
119
0
0
04 Feb 2025
Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables
Zheng Li
Feng Xie
Xichen Guo
Yan Zeng
Hao Zhang
Zhi Geng
CML
225
0
0
25 Nov 2024
Finding and Listing Front-door Adjustment Sets
Finding and Listing Front-door Adjustment Sets
H. Jeong
Jin Tian
Elias Bareinboim
83
9
0
11 Oct 2022
A note on efficient minimum cost adjustment sets in causal graphical
  models
A note on efficient minimum cost adjustment sets in causal graphical models
Ezequiel Smucler
A. Rotnitzky
CML
68
8
0
06 Jan 2022
Efficient adjustment sets in causal graphical models with hidden
  variables
Efficient adjustment sets in causal graphical models with hidden variables
Ezequiel Smucler
F. Sapienza
A. Rotnitzky
CMLOffRL
100
33
0
22 Apr 2020
On efficient adjustment in causal graphs
On efficient adjustment in causal graphs
Jan-Jelle Witte
Leonard Henckel
Marloes H. Maathuis
Vanessa Didelez
CML
80
70
0
17 Feb 2020
Separators and Adjustment Sets in Causal Graphs: Complete Criteria and
  an Algorithmic Framework
Separators and Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework
Benito van der Zander
Maciej Liskiewicz
J. Textor
CML
81
37
0
28 Feb 2018
The Crossover Process: Learnability and Data Protection from Inference
  Attacks
The Crossover Process: Learnability and Data Protection from Inference Attacks
Richard Nock
Giorgio Patrini
Finnian Lattimore
Tibério S. Caetano
32
3
0
13 Jun 2016
Drawing and Analyzing Causal DAGs with DAGitty
Drawing and Analyzing Causal DAGs with DAGitty
J. Textor
CML
42
51
0
19 Aug 2015
Learning from Pairwise Marginal Independencies
Learning from Pairwise Marginal Independencies
J. Textor
Alexander Idelberger
Maciej Liskiewicz
CML
88
10
0
02 Aug 2015
A Complete Generalized Adjustment Criterion
A Complete Generalized Adjustment Criterion
Emilija Perković
J. Textor
M. Kalisch
Marloes H. Maathuis
OffRLCML
85
73
0
06 Jul 2015
A generalized back-door criterion
A generalized back-door criterion
Marloes H. Maathuis
Diego Colombo
122
36
0
22 Jul 2013
Structural Intervention Distance (SID) for Evaluating Causal Graphs
Structural Intervention Distance (SID) for Evaluating Causal Graphs
J. Peters
Peter Buhlmann
CML
114
40
0
05 Jun 2013
1