ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1207.4447
  4. Cited By
A robust, adaptive M-estimator for pointwise estimation in
  heteroscedastic regression
v1v2v3v4 (latest)

A robust, adaptive M-estimator for pointwise estimation in heteroscedastic regression

18 July 2012
M. Chichignoud
Johannes Lederer
ArXiv (abs)PDFHTML

Papers citing "A robust, adaptive M-estimator for pointwise estimation in heteroscedastic regression"

9 / 9 papers shown
Title
Risk Bounds for Robust Deep Learning
Risk Bounds for Robust Deep Learning
Johannes Lederer
OOD
59
16
0
14 Sep 2020
Mean estimation and regression under heavy-tailed distributions--a
  survey
Mean estimation and regression under heavy-tailed distributions--a survey
Gabor Lugosi
S. Mendelson
105
246
0
10 Jun 2019
Learning from MOM's principles: Le Cam's approach
Learning from MOM's principles: Le Cam's approach
Lecué Guillaume
Lerasle Matthieu
117
52
0
08 Jan 2017
Optimal Two-Step Prediction in Regression
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
120
19
0
18 Oct 2014
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality
  Guarantees
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees
M. Chichignoud
Johannes Lederer
Martin J. Wainwright
103
13
0
01 Oct 2014
Adaptation to lowest density regions with application to support
  recovery
Adaptation to lowest density regions with application to support recovery
Tim Patschkowski
Angelika Rohde
137
17
0
18 Aug 2014
Adaptive estimation over anisotropic functional classes via oracle
  approach
Adaptive estimation over anisotropic functional classes via oracle approach
O. Lepski
99
35
0
18 May 2014
Bandwidth selection in kernel empirical risk minimization via the
  gradient
Bandwidth selection in kernel empirical risk minimization via the gradient
M. Chichignoud
S. Loustau
84
1
0
27 Jan 2014
Adaptive Noisy Clustering
Adaptive Noisy Clustering
M. Chichignoud
S. Loustau
55
10
0
10 Jun 2013
1