ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.4321
  4. Cited By
Asymptotic analysis of the role of spatial sampling for covariance
  parameter estimation of Gaussian processes

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

18 January 2013
F. Bachoc
ArXivPDFHTML

Papers citing "Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes"

4 / 4 papers shown
Title
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
F. Bachoc
28
1
0
26 Apr 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
16
0
0
31 Dec 2023
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
19
1
0
16 Sep 2022
Bounds in $L^1$ Wasserstein distance on the normal approximation of
  general M-estimators
Bounds in L1L^1L1 Wasserstein distance on the normal approximation of general M-estimators
F. Bachoc
M. Fathi
15
0
0
18 Nov 2021
1