ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.2530
  4. Cited By
Infinite-dimensional Bayesian filtering for detection of quasi-periodic
  phenomena in spatio-temporal data
v1v2 (latest)

Infinite-dimensional Bayesian filtering for detection of quasi-periodic phenomena in spatio-temporal data

11 March 2013
Arno Solin
Simo Särkkä
ArXiv (abs)PDFHTML

Papers citing "Infinite-dimensional Bayesian filtering for detection of quasi-periodic phenomena in spatio-temporal data"

6 / 6 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
136
4
0
13 Mar 2025
Gaussian Process Latent Force Models for Learning and Stochastic Control
  of Physical Systems
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems
Simo Särkkä
Mauricio A. Alvarez
Neil D. Lawrence
52
52
0
15 Sep 2017
Dynamic Decomposition of Spatiotemporal Neural Signals
Dynamic Decomposition of Spatiotemporal Neural Signals
L. Ambrogioni
Marcel van Gerven
E. Maris
25
44
0
09 May 2016
Dependent Matérn Processes for Multivariate Time Series
Dependent Matérn Processes for Multivariate Time Series
A. Vandenberg-Rodes
Babak Shahbaba
AI4TS
25
2
0
11 Feb 2015
Fast Direct Methods for Gaussian Processes
Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
120
386
0
24 Mar 2014
Efficient State-Space Inference of Periodic Latent Force Models
Efficient State-Space Inference of Periodic Latent Force Models
S. Reece
Stephen J. Roberts
Siddhartha Ghosh
A. Rogers
N. Jennings
72
24
0
23 Oct 2013
1