ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.5690
178
101
v1v2v3v4v5v6v7v8 (latest)

Universality for the largest eigenvalue of a class of sample covariance matrices

21 April 2013
Z. Bao
G. Pan
Wang Zhou
ArXiv (abs)PDFHTML
Abstract

In this paper, we will derive the universality of the largest eigenvalue of a class of real or complex large dimensional sample covariance matrices in the form of WN=Σ1/2XX∗Σ1/2\mathcal{W}_N=\Sigma^{1/2} XX^*\Sigma^{1/2}WN​=Σ1/2XX∗Σ1/2. Here X=(xij)M,NX=(x_{ij})_{M,N}X=(xij​)M,N​ is an M×NM\times NM×N random matrix with independent entries xij,1≤i≤M,1≤j≤Nx_{ij},1\leq i\leq M, 1\leq j\leq Nxij​,1≤i≤M,1≤j≤N such that Exij=0\mathbb{E}x_{ij}=0Exij​=0, E∣xij∣2=1/N\mathbb{E}|x_{ij}|^2=1/NE∣xij​∣2=1/N. We say WN\mathcal{W}_NWN​ is a classical complex sample covariance matrix if there also exists Exij2=0,1≤i≤M,1≤j≤N\mathbb{E}x_{ij}^2=0,1\leq i\leq M, 1\leq j\leq NExij2​=0,1≤i≤M,1≤j≤N. Moreover, on dimensions we assume that M=M(N)M=M(N)M=M(N) and N/M→d∈(0,∞)N/M\rightarrow d\in (0,\infty)N/M→d∈(0,∞) as N→∞N\rightarrow \inftyN→∞. For a class of deterministic positive definite M×MM\times MM×M matrix Σ\SigmaΣ, we show that the limiting behavior of the largest eigenvalue of WN\mathcal{W}_NWN​ is universal under some additional assumptions on the distributions of (xij)′(x_{ij})^\prime(xij​)′s. Consequently, in the classical complex case, combing this universality property and the results known for Gaussian case derived by El Karoui in \cite{Karoui2007} (nonsingular case) and Onatski in \cite{Onatski2008}(singular case) we show that after appropriate normalization the largest eigenvalue of WN\mathcal{W}_NWN​ converges weakly to the type 2 Tracy-Widom distribution TW2\mathrm{TW_2}TW2​.

View on arXiv
Comments on this paper