ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.1322
  4. Cited By
Asymptotic theory with hierarchical autocorrelation: Ornstein-Uhlenbeck
  tree models

Asymptotic theory with hierarchical autocorrelation: Ornstein-Uhlenbeck tree models

6 June 2013
L. Ho
Cécile Ané
ArXiv (abs)PDFHTML

Papers citing "Asymptotic theory with hierarchical autocorrelation: Ornstein-Uhlenbeck tree models"

6 / 6 papers shown
Title
A Generalization Bound of Deep Neural Networks for Dependent Data
A Generalization Bound of Deep Neural Networks for Dependent Data
Quan Huu Do
Binh T. Nguyen
L. Ho
AI4CE
40
0
0
09 Oct 2023
When can we reconstruct the ancestral state? Beyond Brownian motion
When can we reconstruct the ancestral state? Beyond Brownian motion
N. Vu
Thanh P. Nguyen
Binh T. Nguyen
Vu C. Dinh
L. Ho
61
1
0
26 Jul 2022
When can we reconstruct the ancestral state? A unified theory
When can we reconstruct the ancestral state? A unified theory
L. Ho
Vu C. Dinh
42
5
0
14 Nov 2021
On the convergence of the maximum likelihood estimator for the
  transition rate under a 2-state symmetric model
On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model
L. Ho
Vu C. Dinh
Frederick Albert Matsen IV
M. Suchard
47
0
0
10 Mar 2019
Necessary and sufficient conditions for consistent root reconstruction
  in Markov models on trees
Necessary and sufficient conditions for consistent root reconstruction in Markov models on trees
W. Fan
S. Roch
38
13
0
18 Jul 2017
Phase transition on the convergence rate of parameter estimation under
  an Ornstein-Uhlenbeck diffusion on a tree
Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree
Cécile Ané
L. Ho
S. Roch
74
19
0
06 Jun 2014
1