ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.6042
  4. Cited By
OptShrink: An algorithm for improved low-rank signal matrix denoising by
  optimal, data-driven singular value shrinkage

OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage

25 June 2013
R. Nadakuditi
ArXivPDFHTML

Papers citing "OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage"

47 / 47 papers shown
Title
Generalization for Least Squares Regression With Simple Spiked
  Covariances
Generalization for Least Squares Regression With Simple Spiked Covariances
Jiping Li
Rishi Sonthalia
23
0
0
17 Oct 2024
Nuclear Norm Regularization for Deep Learning
Nuclear Norm Regularization for Deep Learning
Christopher Scarvelis
Justin Solomon
25
1
0
23 May 2024
Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits
  and Optimal Spectral Methods
Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits and Optimal Spectral Methods
Yihan Zhang
Marco Mondelli
38
3
0
22 May 2024
Controlling the False Discovery Rate in Subspace Selection
Controlling the False Discovery Rate in Subspace Selection
Mateo Díaz
Venkat Chandrasekaran
24
0
0
14 Apr 2024
Design a Metric Robust to Complicated High Dimensional Noise for
  Efficient Manifold Denoising
Design a Metric Robust to Complicated High Dimensional Noise for Efficient Manifold Denoising
Hau-tieng Wu
DiffM
21
2
0
08 Jan 2024
Is your data alignable? Principled and interpretable alignability
  testing and integration of single-cell data
Is your data alignable? Principled and interpretable alignability testing and integration of single-cell data
Rong Ma
Eric D. Sun
D. Donoho
James Y. Zou
26
8
0
03 Aug 2023
Uniform error bound for PCA matrix denoising
Uniform error bound for PCA matrix denoising
Xin T. Tong
Wanjie Wang
Yuguan Wang
13
2
0
22 Jun 2023
On the Noise Sensitivity of the Randomized SVD
On the Noise Sensitivity of the Randomized SVD
Elad Romanov
24
0
0
27 May 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
40
4
0
10 Mar 2023
Matrix Denoising with Partial Noise Statistics: Optimal Singular Value
  Shrinkage of Spiked F-Matrices
Matrix Denoising with Partial Noise Statistics: Optimal Singular Value Shrinkage of Spiked F-Matrices
M. Gavish
W. Leeb
Elad Romanov
11
6
0
02 Nov 2022
Capturing the Denoising Effect of PCA via Compression Ratio
Capturing the Denoising Effect of PCA via Compression Ratio
Chandra Sekhar Mukherjee
Nikhil Doerkar
Jiapeng Zhang
6
3
0
22 Apr 2022
Empirical Bayes PCA in high dimensions
Empirical Bayes PCA in high dimensions
Xinyi Zhong
Chang Su
Z. Fan
13
18
0
21 Dec 2020
ScreeNOT: Exact MSE-Optimal Singular Value Thresholding in Correlated
  Noise
ScreeNOT: Exact MSE-Optimal Singular Value Thresholding in Correlated Noise
D. Donoho
M. Gavish
Elad Romanov
12
27
0
25 Sep 2020
Tracy-Widom law for the extreme eigenvalues of large signal-plus-noise
  matrices
Tracy-Widom law for the extreme eigenvalues of large signal-plus-noise matrices
Zhixiang Zhang
G. Pan
4
3
0
25 Sep 2020
Edge statistics of large dimensional deformed rectangular matrices
Edge statistics of large dimensional deformed rectangular matrices
Xiucai Ding
Fan Yang
25
9
0
01 Sep 2020
Tracy-Widom distribution for heterogeneous Gram matrices with
  applications in signal detection
Tracy-Widom distribution for heterogeneous Gram matrices with applications in signal detection
Xiucai Ding
Fan Yang
8
15
0
10 Aug 2020
Optimal singular value shrinkage for operator norm loss
Optimal singular value shrinkage for operator norm loss
W. Leeb
6
11
0
24 May 2020
Detection thresholds in very sparse matrix completion
Detection thresholds in very sparse matrix completion
C. Bordenave
Simon Coste
R. Nadakuditi
20
25
0
12 May 2020
How to reduce dimension with PCA and random projections?
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Edgar Dobriban
David P. Woodruff
24
28
0
01 May 2020
Low-rank matrix denoising for count data using unbiased Kullback-Leibler
  risk estimation
Low-rank matrix denoising for count data using unbiased Kullback-Leibler risk estimation
Jérémie Bigot
Charles-Alban Deledalle
9
5
0
28 Jan 2020
Adaptive Structure-constrained Robust Latent Low-Rank Coding for Image
  Recovery
Adaptive Structure-constrained Robust Latent Low-Rank Coding for Image Recovery
Zhao Zhang
Lei Wang
Sheng R. Li
Yang Wang
Zheng-Wei Zhang
Zhengjun Zha
Meng Wang
11
11
0
21 Aug 2019
Freeness over the diagonal and outliers detection in deformed random
  matrices with a variance profile
Freeness over the diagonal and outliers detection in deformed random matrices with a variance profile
Jérémie Bigot
Camille Male
18
5
0
17 Jul 2019
Spiked separable covariance matrices and principal components
Spiked separable covariance matrices and principal components
Xiucai Ding
Fan Yang
15
56
0
29 May 2019
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
19
7
0
26 Apr 2019
Time Series Source Separation using Dynamic Mode Decomposition
Time Series Source Separation using Dynamic Mode Decomposition
Arvind Prasadan
R. Nadakuditi
AI4TS
21
6
0
04 Mar 2019
Matrix denoising for weighted loss functions and heterogeneous signals
Matrix denoising for weighted loss functions and heterogeneous signals
W. Leeb
22
25
0
25 Feb 2019
MIXANDMIX: numerical techniques for the computation of empirical
  spectral distributions of population mixtures
MIXANDMIX: numerical techniques for the computation of empirical spectral distributions of population mixtures
Lucilio Cordero-Grande
13
3
0
13 Dec 2018
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
20
25
0
06 Nov 2018
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
11
25
0
30 Oct 2018
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Anru R. Zhang
T. Tony Cai
Yihong Wu
22
69
0
19 Oct 2018
Panoramic Robust PCA for Foreground-Background Separation on Noisy,
  Free-Motion Camera Video
Panoramic Robust PCA for Foreground-Background Separation on Noisy, Free-Motion Camera Video
Brian E. Moore
Chen Gao
R. Nadakuditi
34
38
0
18 Dec 2017
Optimal Shrinkage of Singular Values Under Random Data Contamination
Optimal Shrinkage of Singular Values Under Random Data Contamination
D. Barash
M. Gavish
18
5
0
26 Oct 2017
Permutation methods for factor analysis and PCA
Permutation methods for factor analysis and PCA
Edgar Dobriban
19
54
0
02 Oct 2017
Augmented Robust PCA For Foreground-Background Separation on Noisy,
  Moving Camera Video
Augmented Robust PCA For Foreground-Background Separation on Noisy, Moving Camera Video
Chen Gao
Brian E. Moore
R. Nadakuditi
11
10
0
27 Sep 2017
Optimal prediction in the linearly transformed spiked model
Optimal prediction in the linearly transformed spiked model
Edgar Dobriban
W. Leeb
A. Singer
27
20
0
07 Sep 2017
Asymptotic performance of PCA for high-dimensional heteroscedastic data
Asymptotic performance of PCA for high-dimensional heteroscedastic data
David Hong
Laura Balzano
Jeffrey A. Fessler
36
54
0
20 Mar 2017
PCA from noisy, linearly reduced data: the diagonal case
PCA from noisy, linearly reduced data: the diagonal case
Edgar Dobriban
W. Leeb
A. Singer
17
5
0
30 Nov 2016
Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly
  Accelerated Dynamic Imaging
Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging
S. Ravishankar
Brian E. Moore
R. Nadakuditi
Jeffrey A. Fessler
15
69
0
13 Nov 2016
Generalized SURE for optimal shrinkage of singular values in low-rank
  matrix denoising
Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising
Jérémie Bigot
Charles-Alban Deledalle
D. Féral
19
20
0
24 May 2016
Improved Sparse Low-Rank Matrix Estimation
Improved Sparse Low-Rank Matrix Estimation
Ankit Parekh
I. Selesnick
67
46
0
29 Apr 2016
Enhanced Low-Rank Matrix Approximation
Enhanced Low-Rank Matrix Approximation
Ankit Parekh
I. Selesnick
26
85
0
06 Nov 2015
High dimensional regression and matrix estimation without tuning
  parameters
High dimensional regression and matrix estimation without tuning parameters
S. Chatterjee
23
4
0
25 Oct 2015
Testing in high-dimensional spiked models
Testing in high-dimensional spiked models
Iain M. Johnstone
A. Onatski
33
53
0
24 Sep 2015
Joint Covariance Estimation with Mutual Linear Structure
Joint Covariance Estimation with Mutual Linear Structure
I. Soloveychik
A. Wiesel
21
3
0
01 Jul 2015
Weighted Schatten ppp-Norm Minimization for Image Denoising with Local and Nonlocal Regularization
Yuan Xie
27
4
0
07 Jan 2015
Optimal Shrinkage of Singular Values
Optimal Shrinkage of Singular Values
M. Gavish
D. Donoho
37
181
0
29 May 2014
Matrix estimation by Universal Singular Value Thresholding
Matrix estimation by Universal Singular Value Thresholding
S. Chatterjee
52
520
0
06 Dec 2012
1