ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1307.1827
  4. Cited By
Loss minimization and parameter estimation with heavy tails

Loss minimization and parameter estimation with heavy tails

7 July 2013
Daniel J. Hsu
Sivan Sabato
ArXivPDFHTML

Papers citing "Loss minimization and parameter estimation with heavy tails"

7 / 7 papers shown
Title
Regularized least squares learning with heavy-tailed noise is minimax optimal
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer
Nicole Mücke
Dimitri Meunier
Arthur Gretton
50
0
0
20 May 2025
Robust and Scalable Variational Bayes
Robust and Scalable Variational Bayes
Carlos Misael Madrid Padilla
Shitao Fan
Lizhen Lin
72
0
0
16 Apr 2025
Bandits with heavy tail
Bandits with heavy tail
Sébastien Bubeck
Nicolò Cesa-Bianchi
Gábor Lugosi
144
287
0
08 Sep 2012
Adaptive robust variable selection
Adaptive robust variable selection
Jianqing Fan
Yingying Fan
Emre Barut
557
200
0
22 May 2012
Covariance estimation for distributions with $2+\varepsilon$ moments
Covariance estimation for distributions with 2+ε2+\varepsilon2+ε moments
N. Srivastava
Roman Vershynin
72
117
0
14 Jun 2011
Nuclear norm penalization and optimal rates for noisy low rank matrix
  completion
Nuclear norm penalization and optimal rates for noisy low rank matrix completion
V. Koltchinskii
Alexandre B. Tsybakov
Karim Lounici
172
663
0
29 Nov 2010
Some sharp performance bounds for least squares regression with $L_1$
  regularization
Some sharp performance bounds for least squares regression with L1L_1L1​ regularization
Tong Zhang
129
268
0
20 Aug 2009
1