ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.2867
  4. Cited By
Composite Self-Concordant Minimization
v1v2 (latest)

Composite Self-Concordant Minimization

13 August 2013
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
ArXiv (abs)PDFHTML

Papers citing "Composite Self-Concordant Minimization"

28 / 28 papers shown
Title
Gradient Descent-Type Methods: Background and Simple Unified Convergence
  Analysis
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
58
0
0
19 Dec 2022
Faster Stochastic First-Order Method for Maximum-Likelihood Quantum
  State Tomography
Faster Stochastic First-Order Method for Maximum-Likelihood Quantum State Tomography
C. Tsai
Hao-Chung Cheng
Yen-Huan Li
56
4
0
23 Nov 2022
On Efficient and Scalable Computation of the Nonparametric Maximum
  Likelihood Estimator in Mixture Models
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture Models
Yangjing Zhang
Ying Cui
B. Sen
Kim-Chuan Toh
80
5
0
16 Aug 2022
Efficient proximal gradient algorithms for joint graphical lasso
Efficient proximal gradient algorithms for joint graphical lasso
Jie Chen
Ryosuke Shimmura
J. Suzuki
18
0
0
16 Jul 2021
Algorithms for Nonnegative Matrix Factorization with the
  Kullback-Leibler Divergence
Algorithms for Nonnegative Matrix Factorization with the Kullback-Leibler Divergence
L. Hien
Nicolas Gillis
79
59
0
05 Oct 2020
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
Deyi Liu
Volkan Cevher
Quoc Tran-Dinh
87
15
0
17 Feb 2020
Self-Concordant Analysis of Frank-Wolfe Algorithms
Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechensky
P. Ostroukhov
K. Safin
Shimrit Shtern
Mathias Staudigl
103
24
0
11 Feb 2020
Finite-sample analysis of M-estimators using self-concordance
Finite-sample analysis of M-estimators using self-concordance
Dmitrii Ostrovskii
Francis R. Bach
87
52
0
16 Oct 2018
Dual optimization for convex constrained objectives without the
  gradient-Lipschitz assumption
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
83
6
0
10 Jul 2018
An inexact subsampled proximal Newton-type method for large-scale
  machine learning
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
Jason D. Lee
Yuekai Sun
67
15
0
28 Aug 2017
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
69
62
0
14 Mar 2017
Fast and Simple Optimization for Poisson Likelihood Models
Fast and Simple Optimization for Poisson Likelihood Models
Niao He
Zaïd Harchaoui
Yichen Wang
Le Song
102
14
0
03 Aug 2016
Randomized block proximal damped Newton method for composite
  self-concordant minimization
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
66
11
0
01 Jul 2016
A single-phase, proximal path-following framework
A single-phase, proximal path-following framework
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
45
6
0
05 Mar 2016
Dropping Convexity for Faster Semi-definite Optimization
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
101
173
0
14 Sep 2015
Adaptive Smoothing Algorithms for Nonsmooth Composite Convex
  Minimization
Adaptive Smoothing Algorithms for Nonsmooth Composite Convex Minimization
Quoc Tran-Dinh
130
28
0
01 Sep 2015
Structured Sparsity: Discrete and Convex approaches
Structured Sparsity: Discrete and Convex approaches
Anastasios Kyrillidis
Luca Baldassarre
Marwa El Halabi
Quoc Tran-Dinh
Volkan Cevher
63
27
0
20 Jul 2015
A scalable system for primal-dual optimization
R. Ionescu
30
0
0
06 Jul 2015
Poisson Matrix Recovery and Completion
Poisson Matrix Recovery and Completion
Yang Cao
Yao Xie
72
63
0
20 Apr 2015
Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal
  Reconstruction with a Convex Constraint
Projected Nesterov's Proximal-Gradient Algorithm for Sparse Signal Reconstruction with a Convex Constraint
Renliang Gu
Aleksandar Dogandzic
34
18
0
09 Feb 2015
Composite convex minimization involving self-concordant-like cost
  functions
Composite convex minimization involving self-concordant-like cost functions
Quoc Tran-Dinh
Yen-Huan Li
Volkan Cevher
63
19
0
04 Feb 2015
Poisson Matrix Completion
Poisson Matrix Completion
Yang Cao
Yao Xie
62
10
0
26 Jan 2015
Communication-Efficient Distributed Optimization of Self-Concordant
  Empirical Loss
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
181
72
0
01 Jan 2015
Convex Optimization for Big Data
Convex Optimization for Big Data
Volkan Cevher
Stephen Becker
Mark Schmidt
87
303
0
04 Nov 2014
A Primal-Dual Algorithmic Framework for Constrained Convex Minimization
A Primal-Dual Algorithmic Framework for Constrained Convex Minimization
Quoc Tran-Dinh
Volkan Cevher
114
47
0
20 Jun 2014
Scalable sparse covariance estimation via self-concordance
Scalable sparse covariance estimation via self-concordance
Anastasios Kyrillidis
Rabeeh Karimi Mahabadi
Quoc Tran-Dinh
Volkan Cevher
78
13
0
13 May 2014
An Inexact Proximal Path-Following Algorithm for Constrained Convex
  Minimization
An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
Volkan Cevher
56
29
0
07 Nov 2013
Sparsity Based Poisson Denoising with Dictionary Learning
Sparsity Based Poisson Denoising with Dictionary Learning
Raja Giryes
Michael Elad
141
114
0
17 Sep 2013
1