ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.3890
  4. Cited By
On estimation of the noise variance in high-dimensional probabilistic
  principal component analysis
v1v2 (latest)

On estimation of the noise variance in high-dimensional probabilistic principal component analysis

18 August 2013
Damien Passemier
Z. Li
Jianfeng Yao
ArXiv (abs)PDFHTML

Papers citing "On estimation of the noise variance in high-dimensional probabilistic principal component analysis"

9 / 9 papers shown
Title
The Role of Hyperparameters in Predictive Multiplicity
The Role of Hyperparameters in Predictive Multiplicity
Mustafa Cavus
Katarzyna Wo'znica
Przemysław Biecek
80
0
0
13 Mar 2025
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
144
20
0
10 Jan 2021
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy
  Rank-1 Setting
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy Rank-1 Setting
Arvind Prasadan
R. Nadakuditi
D. Paul
59
0
0
22 May 2019
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
105
26
0
30 Oct 2018
Wald Statistics in high-dimensional PCA
Wald Statistics in high-dimensional PCA
Matthias Loffler
40
1
0
10 May 2018
Exact Dimensionality Selection for Bayesian PCA
Exact Dimensionality Selection for Bayesian PCA
C. Bouveyron
Pierre Latouche
Pierre-Alexandre Mattei
30
17
0
08 Mar 2017
Hypergeometric Functions of Matrix Arguments and Linear Statistics of
  Multi-Spiked Hermitian Matrix Models
Hypergeometric Functions of Matrix Arguments and Linear Statistics of Multi-Spiked Hermitian Matrix Models
Damien Passemier
M. Mckay
Yang Chen
107
6
0
03 Jun 2014
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrix
  Models
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrix Models
Damien Passemier
M. Mckay
Yang Chen
103
12
0
26 Feb 2014
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
D. Donoho
M. Gavish
Iain M. Johnstone
172
208
0
04 Nov 2013
1