ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.0425
  4. Cited By
Testing the Manifold Hypothesis

Testing the Manifold Hypothesis

1 October 2013
Charles Fefferman
S. Mitter
Hariharan Narayanan
ArXivPDFHTML

Papers citing "Testing the Manifold Hypothesis"

20 / 20 papers shown
Title
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
Michal Balcerak
Tamaz Amiranashvili
Suprosanna Shit
Antonio Terpin
Lea Bogensperger
Sebastian Kaltenbach
Petros Koumoutsakos
Bjoern Menze
DiffM
93
2
0
14 Apr 2025
Token embeddings violate the manifold hypothesis
Token embeddings violate the manifold hypothesis
Michael Robinson
Sourya Dey
Tony Chiang
71
2
0
01 Apr 2025
Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Edwin Tay
Nazli Tümer
Amir A. Zadpoor
MedIm
133
0
0
27 Mar 2025
Spherical Tree-Sliced Wasserstein Distance
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
68
3
0
14 Mar 2025
Variational autoencoders with latent high-dimensional steady geometric flows for dynamics
Variational autoencoders with latent high-dimensional steady geometric flows for dynamics
Andrew Gracyk
DRL
105
0
0
03 Jan 2025
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
83
2
0
28 Oct 2024
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Chen Liu
Guillaume Huguet
Guy Wolf
Ian M. Adelstein
Tim G. J. Rudner
Smita Krishnaswamy
63
4
0
16 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
61
7
0
08 Oct 2024
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Willem Diepeveen
Georgios Batzolis
Zakhar Shumaylov
Carola-Bibiane Schönlieb
DiffM
43
2
0
02 Oct 2024
Relative Representations: Topological and Geometric Perspectives
Relative Representations: Topological and Geometric Perspectives
Alejandro García-Castellanos
Giovanni Luca Marchetti
Danica Kragic
Martina Scolamiero
60
0
0
17 Sep 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
54
0
0
09 Sep 2024
Manifold learning in Wasserstein space
Manifold learning in Wasserstein space
Keaton Hamm
Caroline Moosmüller
Bernhard Schmitzer
Matthew Thorpe
64
5
0
14 Nov 2023
Application-driven Validation of Posteriors in Inverse Problems
Application-driven Validation of Posteriors in Inverse Problems
T. Adler
Jan-Hinrich Nolke
Annika Reinke
M. Tizabi
Sebastian Gruber
...
Lynton Ardizzone
Paul F. Jaeger
Florian Buettner
Ullrich Kothe
Lena Maier-Hein
MedIm
55
1
0
18 Sep 2023
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
41
2
0
02 Feb 2022
Mode and Ridge Estimation in Euclidean and Directional Product Spaces: A Mean Shift Approach
Mode and Ridge Estimation in Euclidean and Directional Product Spaces: A Mean Shift Approach
Yikun Zhang
Yen-Chi Chen
95
1
0
16 Oct 2021
Variational Autoencoder with Learned Latent Structure
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
42
43
0
18 Jun 2020
Learning Manifolds with K-Means and K-Flats
Learning Manifolds with K-Means and K-Flats
Guillermo D. Cañas
T. Poggio
Lorenzo Rosasco
78
49
0
05 Sep 2012
Manifold estimation and singular deconvolution under Hausdorff loss
Manifold estimation and singular deconvolution under Hausdorff loss
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
UQCV
38
101
0
21 Sep 2011
Minimax Manifold Estimation
Minimax Manifold Estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
64
128
0
04 Jul 2010
K-Dimensional Coding Schemes in Hilbert Spaces
K-Dimensional Coding Schemes in Hilbert Spaces
Augusto Maurer
63
108
0
03 Feb 2010
1