Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1311.0851
Cited By
v1
v2
v3 (latest)
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model
4 November 2013
D. Donoho
M. Gavish
Iain M. Johnstone
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model"
39 / 89 papers shown
Title
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Yan Sun
David P. Woodruff
63
28
0
01 May 2020
Regularization in High-Dimensional Regression and Classification via Random Matrix Theory
Panagiotis Lolas
84
14
0
30 Mar 2020
Geodesically parameterized covariance estimation
A. Musolas
S.T. Smith
Youssef Marzouk
59
4
0
06 Jan 2020
A note on identifiability conditions in confirmatory factor analysis
W. Leeb
CML
33
4
0
05 Dec 2019
Matrix Means and a Novel High-Dimensional Shrinkage Phenomenon
A. Lodhia
Keith D. Levin
Elizaveta Levina
30
3
0
16 Oct 2019
Asymptotics of empirical eigenvalues for large separable covariance matrices
Tiebin Mi
Robert C. Qiu
67
0
0
10 Oct 2019
Spiked separable covariance matrices and principal components
Xiucai Ding
Fan Yang
87
57
0
29 May 2019
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
91
7
0
26 Apr 2019
Optimal Recovery of Precision Matrix for Mahalanobis Distance from High Dimensional Noisy Observations in Manifold Learning
M. Gavish
Ronen Talmon
P. Su
Hau‐Tieng Wu
47
8
0
19 Apr 2019
Deep CNNs Meet Global Covariance Pooling: Better Representation and Generalization
Qilong Wang
Jiangtao Xie
W. Zuo
Lei Zhang
P. Li
81
99
0
15 Apr 2019
Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification
L. Duan
58
9
0
21 Mar 2019
Matrix denoising for weighted loss functions and heterogeneous signals
W. Leeb
87
25
0
25 Feb 2019
Statistical inference with F-statistics when fitting simple models to high-dimensional data
Hannes Leeb
Lukas Steinberger
24
1
0
12 Feb 2019
Robust Streaming PCA
D. Bienstock
Minchan Jeong
Apurv Shukla
Se-Young Yun
42
3
0
08 Feb 2019
Steerable
e
e
e
PCA: Rotationally Invariant Exponential Family PCA
Zhizhen Zhao
Lydia T. Liu
A. Singer
47
3
0
20 Dec 2018
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
81
25
0
06 Nov 2018
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
Rajen Dinesh Shah
Benjamin Frot
Gian-Andrea Thanei
N. Meinshausen
68
6
0
02 Nov 2018
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
107
26
0
30 Oct 2018
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Anru R. Zhang
T. Tony Cai
Yihong Wu
197
72
0
19 Oct 2018
Optimal Covariance Estimation for Condition Number Loss in the Spiked Model
D. Donoho
Behrooz Ghorbani
141
7
0
17 Oct 2018
Adapting to Unknown Noise Distribution in Matrix Denoising
Andrea Montanari
Feng Ruan
Jun Yan
100
13
0
06 Oct 2018
Harmonic Alignment
Jay S. Stanley
Scott A. Gigante
Guy Wolf
Smita Krishnaswamy
DiffM
46
16
0
30 Sep 2018
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
86
55
0
12 Aug 2018
Estimating Learnability in the Sublinear Data Regime
Weihao Kong
Gregory Valiant
102
30
0
04 May 2018
Graph-based regularization for regression problems with alignment and highly-correlated designs
Yuan Li
Benjamin Mark
Garvesh Raskutti
Rebecca Willett
Hyebin Song
David Neiman
42
23
0
20 Mar 2018
Multidimensional Scaling of Noisy High Dimensional Data
Erez Peterfreund
M. Gavish
42
22
0
30 Jan 2018
The Dispersion Bias
L. Goldberg
A. Papanicolaou
Alexander D. Shkolnik
72
16
0
15 Nov 2017
Tail sums of Wishart and GUE eigenvalues beyond the bulk edge
Iain M. Johnstone
61
1
0
21 Apr 2017
Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
A. Beskos
Ajay Jasra
K. Law
Youssef Marzouk
Yan Zhou
67
42
0
15 Mar 2017
Think globally, fit locally under the Manifold Setup: Asymptotic Analysis of Locally Linear Embedding
Hau‐Tieng Wu
Nan Wu
51
40
0
12 Mar 2017
PCA from noisy, linearly reduced data: the diagonal case
Edgar Dobriban
W. Leeb
A. Singer
86
5
0
30 Nov 2016
Graph-Guided Banding of the Covariance Matrix
Jacob Bien
61
6
0
01 Jun 2016
Denoising and Covariance Estimation of Single Particle Cryo-EM Images
T. Bhamre
Teng Zhang
A. Singer
53
65
0
22 Feb 2016
Latent common manifold learning with alternating diffusion: analysis and applications
Ronen Talmon
Hau‐Tieng Wu
MedIm
74
44
0
30 Jan 2016
Spectrum Estimation from Samples
Weihao Kong
Gregory Valiant
117
73
0
30 Jan 2016
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
63
13
0
28 Nov 2015
Towards Effective Codebookless Model for Image Classification
Qilong Wang
P. Li
Lei Zhang
W. Zuo
81
31
0
09 Jul 2015
Fast Steerable Principal Component Analysis
Zhizhen Zhao
Y. Shkolnisky
A. Singer
74
70
0
02 Dec 2014
Optimal Shrinkage of Singular Values
M. Gavish
D. Donoho
153
183
0
29 May 2014
Previous
1
2