ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.7402
  4. Cited By
Adaptive pointwise estimation of conditional density function
v1v2 (latest)

Adaptive pointwise estimation of conditional density function

28 December 2013
Karine Bertin
C. Lacour
Vincent Rivoirard
ArXiv (abs)PDFHTML

Papers citing "Adaptive pointwise estimation of conditional density function"

19 / 19 papers shown
Title
Privately Learning Smooth Distributions on the Hypercube by Projections
Privately Learning Smooth Distributions on the Hypercube by Projections
Clément Lalanne
Sébastien Gadat
72
1
0
16 Sep 2024
Neural Conditional Probability for Uncertainty Quantification
Neural Conditional Probability for Uncertainty Quantification
Vladimir Kostic
Karim Lounici
Grégoire Pacreau
P. Novelli
G. Turri
Massimiliano Pontil
TPMUQCV
119
0
0
01 Jul 2024
MCD: Marginal Contrastive Discrimination for conditional density
  estimation
MCD: Marginal Contrastive Discrimination for conditional density estimation
Benjamin Riu
35
0
0
03 Jun 2022
Adaptive greedy algorithm for moderately large dimensions in kernel
  conditional density estimation
Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation
Minh Nguyen
C. Lacour
Vincent Rivoirard
10
3
0
28 Jun 2021
Explaining predictive models using Shapley values and non-parametric
  vine copulas
Explaining predictive models using Shapley values and non-parametric vine copulas
K. Aas
T. Nagler
Martin Jullum
Anders Løland
FAtt
62
20
0
12 Feb 2021
Minimum discrepancy principle strategy for choosing $k$ in $k$-NN
  regression
Minimum discrepancy principle strategy for choosing kkk in kkk-NN regression
Yaroslav Averyanov
Alain Celisse
80
0
0
20 Aug 2020
Deconvolution with unknown noise distribution is possible for
  multivariate signals
Deconvolution with unknown noise distribution is possible for multivariate signals
Elisabeth Gassiat
Sylvain Le Corff
Luc Lehéricy
80
12
0
25 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
119
535
0
12 May 2020
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAttTDI
88
632
0
25 Mar 2019
Neumann Networks for Inverse Problems in Imaging
Neumann Networks for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
78
24
0
13 Jan 2019
Local bandwidth selection for kernel density estimation in bifurcating
  Markov chain model
Local bandwidth selection for kernel density estimation in bifurcating Markov chain model
S. Valère
A. Roche
54
6
0
21 Jun 2017
Converting High-Dimensional Regression to High-Dimensional Conditional
  Density Estimation
Converting High-Dimensional Regression to High-Dimensional Conditional Density Estimation
Rafael Izbicki
Ann B. Lee
187
78
0
26 Apr 2017
Estimator selection: a new method with applications to kernel density
  estimation
Estimator selection: a new method with applications to kernel density estimation
C. Lacour
P. Massart
Vincent Rivoirard
85
57
0
18 Jul 2016
Pointwise Adaptive Estimation of the MarginalDensity of a Weakly
  Dependent Process
Pointwise Adaptive Estimation of the MarginalDensity of a Weakly Dependent Process
Karine Bertin
N. Klutchnikoff
57
5
0
31 Mar 2016
Adaptive wavelet multivariate regression with errors in variables
Adaptive wavelet multivariate regression with errors in variables
M. Chichignoud
V. Hoang
T. Ngoc
Vincent Rivoirard
24
11
0
12 Jan 2016
Estimating the conditional density by histogram type estimators and
  model selection
Estimating the conditional density by histogram type estimators and model selection
M. Sart
53
10
0
22 Dec 2015
Estimating the Division Kernel of a Size-Structured Population
Estimating the Division Kernel of a Size-Structured Population
V. Hoang
26
11
0
09 Sep 2015
Minimal penalty for Goldenshluger-Lepski method
Minimal penalty for Goldenshluger-Lepski method
C. Lacour
P. Massart
93
37
0
03 Mar 2015
Adaptation to lowest density regions with application to support
  recovery
Adaptation to lowest density regions with application to support recovery
Tim Patschkowski
Angelika Rohde
135
17
0
18 Aug 2014
1