Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.1472
Cited By
v1
v2
v3
v4 (latest)
Parallel inference for massive distributed spatial data using low-rank models
6 February 2014
Matthias Katzfuss
D. Hammerling
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Parallel inference for massive distributed spatial data using low-rank models"
8 / 8 papers shown
Title
Scalable Spatio-Temporal Smoothing via Hierarchical Sparse Cholesky Decomposition
M. Jurek
Matthias Katzfuss
53
9
0
19 Jul 2022
Kryging: Geostatistical analysis of large-scale datasets using Krylov subspace methods
Suman Majumder
Yawen Guan
Brian J. Reich
A. Saibaba
42
4
0
24 Dec 2020
Hierarchical sparse Cholesky decomposition with applications to high-dimensional spatio-temporal filtering
M. Jurek
Matthias Katzfuss
58
20
0
30 Jun 2020
Large-scale Environmental Data Science with ExaGeoStatR
Sameh Abdulah
Yuxiao Li
JIAN-PENG Cao
Hatem Ltaief
David E. Keyes
M. Genton
Ying Sun
58
10
0
23 Jul 2019
Multi-Scale Process Modelling and Distributed Computation for Spatial Data
A. Zammit‐Mangion
J. Rougier
259
11
0
17 Jul 2019
A class of multi-resolution approximations for large spatial datasets
Matthias Katzfuss
Wenlong Gong
GP
168
30
0
24 Oct 2017
FRK: An R Package for Spatial and Spatio-Temporal Prediction with Large Datasets
A. Zammit‐Mangion
Noel Cressie
87
77
0
23 May 2017
A multi-resolution approximation for massive spatial datasets
Matthias Katzfuss
119
245
0
16 Jul 2015
1