ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.5297
  4. Cited By
Maximum-A-Posteriori Estimates in Linear Inverse Problems with
  Log-concave Priors are Proper Bayes Estimators

Maximum-A-Posteriori Estimates in Linear Inverse Problems with Log-concave Priors are Proper Bayes Estimators

21 February 2014
Martin Burger
F. Lucka
ArXivPDFHTML

Papers citing "Maximum-A-Posteriori Estimates in Linear Inverse Problems with Log-concave Priors are Proper Bayes Estimators"

6 / 6 papers shown
Title
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
Yasi Zhang
Peiyu Yu
Yaxuan Zhu
Yingshan Chang
Feng Gao
Yingnian Wu
Oscar Leong
105
9
0
29 May 2024
Revisiting maximum-a-posteriori estimation in log-concave models
Revisiting maximum-a-posteriori estimation in log-concave models
Marcelo Pereyra
55
22
0
19 Dec 2016
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in
  high-dimensional inverse problems using L1-type priors
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors
F. Lucka
59
30
0
01 Jun 2012
Compressible Distributions for High-dimensional Statistics
Compressible Distributions for High-dimensional Statistics
Rémi Gribonval
Volkan Cevher
Mike E. Davies
75
94
0
07 Feb 2011
Hierarchical models in statistical inverse problems and the
  Mumford--Shah functional
Hierarchical models in statistical inverse problems and the Mumford--Shah functional
T. Helin
Matti Lassas
79
30
0
24 Aug 2009
On infinite-dimensional hierarchical probability models in statistical
  inverse problems
On infinite-dimensional hierarchical probability models in statistical inverse problems
T. Helin
74
15
0
30 Jul 2009
1