ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.1430
  4. Cited By
Sparse Principal Component Analysis via Rotation and Truncation
v1v2 (latest)

Sparse Principal Component Analysis via Rotation and Truncation

6 March 2014
Zhenfang Hu
Gang Pan
Yueming Wang
Zhaohui Wu
ArXiv (abs)PDFHTML

Papers citing "Sparse Principal Component Analysis via Rotation and Truncation"

7 / 7 papers shown
Title
Sparse PCA with False Discovery Rate Controlled Variable Selection
Sparse PCA with False Discovery Rate Controlled Variable Selection
Jasin Machkour
Arnaud Breloy
Michael Muma
Daniel P. Palomar
Frédéric Pascal
51
5
0
16 Jan 2024
Regularized Multivariate Analysis Framework for Interpretable
  High-Dimensional Variable Selection
Regularized Multivariate Analysis Framework for Interpretable High-Dimensional Variable Selection
Sergio Muñoz-Romero
Vanessa Gómez-Verdejo
J. Arenas-García
FAtt
38
9
0
22 Dec 2021
A Fast deflation Method for Sparse Principal Component Analysis via
  Subspace Projections
A Fast deflation Method for Sparse Principal Component Analysis via Subspace Projections
Cong Xu
Min Yang
Jin Zhang
13
0
0
03 Dec 2019
Supervised Discriminative Sparse PCA for Com-Characteristic Gene
  Selection and Tumor Classification on Multiview Biological Data
Supervised Discriminative Sparse PCA for Com-Characteristic Gene Selection and Tumor Classification on Multiview Biological Data
Chun-Mei Feng
Yong-mei Xu
Jin-Xing Liu
Ying-Lian Gao
C. Zheng
49
49
0
28 May 2019
Supervised Discrete Hashing with Relaxation
Supervised Discrete Hashing with Relaxation
Jie Gui
Tongliang Liu
Zhenan Sun
Dacheng Tao
Tieniu Tan
54
73
0
07 Apr 2019
Vectorial Dimension Reduction for Tensors Based on Bayesian Inference
Vectorial Dimension Reduction for Tensors Based on Bayesian Inference
Fujiao Ju
Yanfeng Sun
Junbin Gao
Yongli Hu
Baocai Yin
53
13
0
03 Jul 2017
Spectral Sparse Representation for Clustering: Evolved from PCA,
  K-means, Laplacian Eigenmap, and Ratio Cut
Spectral Sparse Representation for Clustering: Evolved from PCA, K-means, Laplacian Eigenmap, and Ratio Cut
Zhenfang Hu
Gang Pan
Yueming Wang
Zhaohui Wu
63
3
0
25 Mar 2014
1