Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1404.1333
Cited By
v1
v2 (latest)
Understanding Machine-learned Density Functionals
4 April 2014
Li Li
John C. Snyder
I. Pelaschier
Jessica Huang
U. Niranjan
Paul Duncan
M. Rupp
K. Müller
K. Burke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Machine-learned Density Functionals"
21 / 21 papers shown
Title
Predicting fermionic densities using a Projected Quantum Kernel method
Francesco Perciavalle
Francesco Plastina
Michele Pisarra
Nicola Lo Gullo
139
0
0
18 Apr 2025
Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension
Sergei Manzhos
Manabu Ihara
99
8
0
17 Nov 2023
Machine learning for accuracy in density functional approximations
Johannes Voss
AI4CE
49
3
0
01 Nov 2023
Grad DFT: a software library for machine learning enhanced density functional theory
Pablo Antonio Moreno Casares
Jack S. Baker
Matija Medvidović
Roberto Dos Reis
J. M. Arrazola
107
9
0
23 Sep 2023
Evolving symbolic density functionals
He Ma
Arunachalam Narayanaswamy
Patrick F. Riley
Li Li
142
32
0
03 Mar 2022
Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-based Approaches
R. Korbmacher
A. Tordeux
95
93
0
11 Nov 2021
How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?
Bhupalee Kalita
Ryan Pederson
Jielun Chen
Li Li
K. Burke
122
9
0
28 Oct 2021
Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR) for representing multidimensional functions with machine-learned lower-dimensional terms allowing insight with a general method
Owen Ren
Mohamed Ali Boussaidi
Dmitry Voytsekhovsky
Manabu Ihara
Sergei Manzhos
GP
52
28
0
24 Nov 2020
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
58
40
0
10 Oct 2020
Machine Learning for Condensed Matter Physics
Edwin Bedolla
L. C. Padierna
R. Castañeda-Priego
AI4CE
80
68
0
28 May 2020
PFNN: A Penalty-Free Neural Network Method for Solving a Class of Second-Order Boundary-Value Problems on Complex Geometries
H. Sheng
Chao Yang
67
118
0
14 Apr 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
85
365
0
18 Jan 2020
Analytical classical density functionals from an equation learning network
Shang-Chun Lin
Georg Martius
M. Oettel
61
36
0
28 Oct 2019
Compressing physical properties of atomic species for improving predictive chemistry
John E. Herr
Kevin J Koh
Kun Yao
John A. Parkhill
AI4CE
55
20
0
31 Oct 2018
Machine learning electron correlation in a disordered medium
Jianhua Ma
Puhan Zhang
Yaohua Tan
Avik W. Ghosh
Gia-Wei Chern
AI4CE
32
15
0
04 Oct 2018
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
61
63
0
19 Dec 2017
Improving Malware Detection Accuracy by Extracting Icon Information
Pedro Silva
Sepehr Akhavan Masouleh
Li Li
48
4
0
10 Dec 2017
Deep learning and the Schrödinger equation
Kyle Mills
M. Spanner
Isaac Tamblyn
70
140
0
05 Feb 2017
Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data
Anuj Karpatne
G. Atluri
James H. Faghmous
M. Steinbach
A. Banerjee
A. Ganguly
Shashi Shekhar
N. Samatova
Vipin Kumar
AI4CE
81
998
0
27 Dec 2016
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
121
607
0
09 Sep 2016
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Kevin Vu
John C. Snyder
Li Li
M. Rupp
Brandon F. Chen
Tarek Khelif
K. Müller
K. Burke
77
100
0
16 Jan 2015
1