Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1405.4324
Cited By
Active Semi-Supervised Learning Using Sampling Theory for Graph Signals
16 May 2014
Akshay Gadde
Aamir Anis
Antonio Ortega
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Active Semi-Supervised Learning Using Sampling Theory for Graph Signals"
26 / 26 papers shown
Title
The Geometry of Self-supervised Learning Models and its Impact on Transfer Learning
Romain Cosentino
Sarath Shekkizhar
Mahdi Soltanolkotabi
A. Avestimehr
Antonio Ortega
SSL
96
7
0
18 Sep 2022
Abstract message passing and distributed graph signal processing
Feng Ji
Y. Lu
Wee Peng Tay
Edwin K. P. Chong
120
0
0
09 Jun 2022
Multiscale Laplacian Learning
Ekaterina Merkurjev
D. Nguyen
Guo-Wei Wei
77
4
0
08 Sep 2021
Sampling and Recovery of Graph Signals based on Graph Neural Networks
Siheng Chen
Maosen Li
Ya Zhang
144
4
0
03 Nov 2020
When Contrastive Learning Meets Active Learning: A Novel Graph Active Learning Paradigm with Self-Supervision
Yanqiao Zhu
Weizhi Xu
Qiang Liu
Shu Wu
116
0
0
30 Oct 2020
Graph Policy Network for Transferable Active Learning on Graphs
Shengding Hu
Zheng Xiong
Meng Qu
Xingdi Yuan
Marc-Alexandre Côté
Zhiyuan Liu
Jian Tang
GNN
214
67
0
24 Jun 2020
Sampling Signals on Graphs: From Theory to Applications
Yuichi Tanaka
Yonina C. Eldar
Antonio Ortega
Gene Cheung
58
10
0
09 Mar 2020
GraphBGS: Background Subtraction via Recovery of Graph Signals
Jhony H. Giraldo
T. Bouwmans
112
25
0
17 Jan 2020
Robust Deep Graph Based Learning for Binary Classification
Minxiang Ye
V. Stanković
L. Stanković
Gene Cheung
OOD
76
12
0
06 Dec 2019
Graph-based Semi-Supervised & Active Learning for Edge Flows
Junteng Jia
Michael T. Schaub
Santiago Segarra
Austin R. Benson
114
77
0
17 May 2019
GFCN: A New Graph Convolutional Network Based on Parallel Flows
Feng Ji
Jielong Yang
Qiang Zhang
Wee Peng Tay
GNN
26
6
0
25 Feb 2019
Approximating Spectral Clustering via Sampling: a Review
Nicolas M Tremblay
Andreas Loukas
70
46
0
29 Jan 2019
Semi-supervised Learning in Network-Structured Data via Total Variation Minimization
A. Jung
A. Hero III
Alexandru Mara
Saeed Jahromi
Ayelet Heimowitz
Yonina C. Eldar
72
31
0
28 Jan 2019
Learning graphs from data: A signal representation perspective
Xiaowen Dong
D. Thanou
Michael G. Rabbat
P. Frossard
134
381
0
03 Jun 2018
On The Complexity of Sparse Label Propagation
A. Jung
89
10
0
25 Apr 2018
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
72
12
0
15 Nov 2017
A random matrix analysis and improvement of semi-supervised learning for large dimensional data
Xiaoyi Mai
Romain Couillet
144
42
0
09 Nov 2017
A Sampling Theory Perspective of Graph-based Semi-supervised Learning
Aamir Anis
Aly El Gamal
A. Avestimehr
Antonio Ortega
145
44
0
26 May 2017
When is Network Lasso Accurate?
A. Jung
Nguyen Tran Quang
Alexandru Mara
144
40
0
07 Apr 2017
Semi-Supervised Learning with Competitive Infection Models
Nir Rosenfeld
Amir Globerson
SSL
169
6
0
19 Mar 2017
Guided Signal Reconstruction Theory
A. Knyazev
Akshay Gadde
Hassan Mansour
Dong Tian
135
3
0
02 Feb 2017
Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights
Gene Cheung
Weng-Tai Su
Yu Mao
Chia-Wen Lin
81
31
0
15 Nov 2016
Distributed Adaptive Learning of Graph Signals
P. Lorenzo
P. Banelli
Sergio Barbarossa
S. Sardellitti
104
63
0
20 Sep 2016
Active Learning for Community Detection in Stochastic Block Models
Akshay Gadde
Eyal En Gad
A. Avestimehr
Antonio Ortega
60
15
0
08 May 2016
A Probabilistic Interpretation of Sampling Theory of Graph Signals
Akshay Gadde
Antonio Ortega
119
73
0
23 Mar 2015
Asymptotic Justification of Bandlimited Interpolation of Graph signals for Semi-Supervised Learning
Aamir Anis
Aly El Gamal
A. Avestimehr
Antonio Ortega
125
19
0
14 Feb 2015
1