ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.5505
  4. Cited By
Kernel Mean Shrinkage Estimators

Kernel Mean Shrinkage Estimators

21 May 2014
Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
ArXivPDFHTML

Papers citing "Kernel Mean Shrinkage Estimators"

19 / 19 papers shown
Title
Variance-Aware Estimation of Kernel Mean Embedding
Variance-Aware Estimation of Kernel Mean Embedding
Geoffrey Wolfer
Pierre Alquier
59
4
0
13 Oct 2022
Minimax Estimation of Kernel Mean Embeddings
Minimax Estimation of Kernel Mean Embeddings
Ilya O. Tolstikhin
Bharath K. Sriperumbudur
Krikamol Muandet
34
86
0
13 Feb 2016
Kernel Mean Estimation via Spectral Filtering
Kernel Mean Estimation via Spectral Filtering
Krikamol Muandet
Bharath K. Sriperumbudur
Bernhard Schölkopf
64
14
0
04 Nov 2014
Nonparametric Independence Testing for Small Sample Sizes
Nonparametric Independence Testing for Small Sample Sizes
Aaditya Ramdas
Leila Wehbe
40
13
0
07 Jun 2014
Density Estimation in Infinite Dimensional Exponential Families
Density Estimation in Infinite Dimensional Exponential Families
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Aapo Hyvarinen
Revant Kumar
59
125
0
12 Dec 2013
Kernel Mean Estimation and Stein's Effect
Kernel Mean Estimation and Stein's Effect
Krikamol Muandet
Kenji Fukumizu
Bharath K. Sriperumbudur
Arthur Gretton
Bernhard Schölkopf
81
40
0
04 Jun 2013
One-Class Support Measure Machines for Group Anomaly Detection
One-Class Support Measure Machines for Group Anomaly Detection
Krikamol Muandet
Bernhard Schölkopf
61
80
0
01 Mar 2013
Conditional mean embeddings as regressors - supplementary
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
102
144
0
21 May 2012
Learning from Distributions via Support Measure Machines
Learning from Distributions via Support Measure Machines
Krikamol Muandet
Kenji Fukumizu
Francesco Dinuzzo
Bernhard Schölkopf
93
197
0
29 Feb 2012
Multi-Task Averaging
Multi-Task Averaging
Sergey Feldman
Andrew Béla Frigyik
M. Gupta
57
16
0
21 Jul 2011
Robust Kernel Density Estimation
Robust Kernel Density Estimation
JooSeuk Kim
Clayton D. Scott
OOD
60
389
0
15 Jul 2011
Kernel Belief Propagation
Kernel Belief Propagation
Le Song
Arthur Gretton
Danny Bickson
Yucheng Low
Carlos Guestrin
79
86
0
27 May 2011
Kernel Bayes' rule
Kernel Bayes' rule
Kenji Fukumizu
Le Song
Arthur Gretton
64
60
0
29 Sep 2010
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
166
526
0
03 Mar 2010
Regularization in kernel learning
Regularization in kernel learning
S. Mendelson
Joe Neeman
124
144
0
13 Jan 2010
Hilbert space embeddings and metrics on probability measures
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
160
741
0
30 Jul 2009
Entropy inference and the James-Stein estimator, with application to
  nonlinear gene association networks
Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
Jean Hausser
K. Strimmer
81
387
0
21 Nov 2008
Stein estimation for the drift of Gaussian processes using the Malliavin
  calculus
Stein estimation for the drift of Gaussian processes using the Malliavin calculus
Nicolas Privault
Anthony Reveillac
72
33
0
07 Nov 2008
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
181
2,352
0
15 May 2008
1