ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.7511
  4. Cited By
Optimal Shrinkage of Singular Values

Optimal Shrinkage of Singular Values

29 May 2014
M. Gavish
D. Donoho
ArXivPDFHTML

Papers citing "Optimal Shrinkage of Singular Values"

13 / 13 papers shown
Title
Gradient Descent as a Shrinkage Operator for Spectral Bias
Gradient Descent as a Shrinkage Operator for Spectral Bias
Simon Lucey
38
0
0
25 Apr 2025
Bayesian Joint Additive Factor Models for Multiview Learning
Bayesian Joint Additive Factor Models for Multiview Learning
Niccolò Anceschi
F. Ferrari
David B. Dunson
Himel Mallick
28
1
0
02 Jun 2024
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
38
4
0
10 Mar 2023
Robust Bayesian Subspace Identification for Small Data Sets
Robust Bayesian Subspace Identification for Small Data Sets
A. R. Mesquita
13
0
0
29 Dec 2022
Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
Zhongyuan Lyu
Dong Xia
29
3
0
11 Jul 2022
Recover the spectrum of covariance matrix: a non-asymptotic iterative
  method
Recover the spectrum of covariance matrix: a non-asymptotic iterative method
Juntao Duan
Ionel Popescu
H. Matzinger
15
0
0
01 Jan 2022
Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
  Dictionary-based Sparse Regression Approach
Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired Dictionary-based Sparse Regression Approach
P. Goyal
P. Benner
17
48
0
11 May 2021
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
13
19
0
27 Aug 2020
How to reduce dimension with PCA and random projections?
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Edgar Dobriban
David P. Woodruff
22
28
0
01 May 2020
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
19
7
0
26 Apr 2019
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
20
25
0
06 Nov 2018
Adaptive Graph Signal Processing: Algorithms and Optimal Sampling
  Strategies
Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies
P. Di Lorenzo
P. Banelli
Elvin Isufi
Sergio Barbarossa
G. Leus
12
86
0
12 Sep 2017
Log-Determinant Divergences Revisited: Alpha--Beta and Gamma Log-Det
  Divergences
Log-Determinant Divergences Revisited: Alpha--Beta and Gamma Log-Det Divergences
A. Cichocki
S. Cruces
S. Amari
16
61
0
18 Dec 2014
1