ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.1385
79
35

Learning the Information Divergence

5 June 2014
O. Dikmen
Zhirong Yang
E. Oja
    UD
ArXiv (abs)PDFHTML
Abstract

Information divergence that measures the difference between two nonnegative matrices or tensors has found its use in a variety of machine learning problems. Examples are Nonnegative Matrix/Tensor Factorization, Stochastic Neighbor Embedding, topic models, and Bayesian network optimization. The success of such a learning task depends heavily on a suitable divergence. A large variety of divergences have been suggested and analyzed, but very few results are available for an objective choice of the optimal divergence for a given task. Here we present a framework that facilitates automatic selection of the best divergence among a given family, based on standard maximum likelihood estimation. We first propose an approximated Tweedie distribution for the beta-divergence family. Selecting the best beta then becomes a machine learning problem solved by maximum likelihood. Next, we reformulate alpha-divergence in terms of beta-divergence, which enables automatic selection of alpha by maximum likelihood with reuse of the learning principle for beta-divergence. Furthermore, we show the connections between gamma and beta-divergences as well as R\ényi and alpha-divergences, such that our automatic selection framework is extended to non-separable divergences. Experiments on both synthetic and real-world data demonstrate that our method can quite accurately select information divergence across different learning problems and various divergence families.

View on arXiv
Comments on this paper