ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.6652
124
23
v1v2 (latest)

Data augmentation for models based on rejection sampling

25 June 2014
Vinayak A. Rao
Lizhen Lin
David B. Dunson
    BDL
ArXiv (abs)PDFHTML
Abstract

We present a data augmentation scheme to perform Markov chain Monte Carlo inference for models where data generation involves a rejection sampling algorithm. Our idea, which seems to be missing in the literature, is a simple scheme to instantiate the rejected proposals preceding each data point. The resulting joint probability over observed and rejected variables can be much simpler than the marginal distribution over the observed variables, which often involves intractable integrals. We consider three problems, the first being the modeling of flow-cytometry measurements subject to truncation. The second is a Bayesian analysis of the matrix Langevin distribution on the Stiefel manifold, and the third, Bayesian inference for a nonparametric Gaussian process density model. The latter two are instances of problems where Markov chain Monte Carlo inference is doubly-intractable. Our experiments demonstrate superior performance over state-of-the-art sampling algorithms for such problems.

View on arXiv
Comments on this paper