ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.8071
  4. Cited By
A simple scheme for the parallelization of particle filters and its
  application to the tracking of complex stochastic systems
v1v2 (latest)

A simple scheme for the parallelization of particle filters and its application to the tracking of complex stochastic systems

30 July 2014
Dan Crisan
Joaquín Míguez
Gonzalo Rios
ArXiv (abs)PDFHTML

Papers citing "A simple scheme for the parallelization of particle filters and its application to the tracking of complex stochastic systems"

3 / 3 papers shown
Title
Analysis of a nonlinear importance sampling scheme for Bayesian
  parameter estimation in state-space models
Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
Joaquín Míguez
I. P. Mariño
M. A. Vázquez
43
11
0
10 Feb 2017
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
108
162
0
19 Nov 2015
On the Optimality of Averaging in Distributed Statistical Learning
On the Optimality of Averaging in Distributed Statistical Learning
Jonathan D. Rosenblatt
B. Nadler
FedML
122
111
0
10 Jul 2014
1