Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1408.2156
Cited By
Statistical guarantees for the EM algorithm: From population to sample-based analysis
9 August 2014
Sivaraman Balakrishnan
Martin J. Wainwright
Bin Yu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Statistical guarantees for the EM algorithm: From population to sample-based analysis"
50 / 265 papers shown
Title
Cutoff for exact recovery of Gaussian mixture models
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2020
Xiaohui Chen
Yun Yang
248
24
0
05 Jan 2020
Universal Inference
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Larry A. Wasserman
Aaditya Ramdas
Sivaraman Balakrishnan
281
178
0
24 Dec 2019
Learning Mixtures of Linear Regressions in Subexponential Time via Fourier Moments
Symposium on the Theory of Computing (STOC), 2019
Sitan Chen
Haibin Zhang
Zhao Song
142
41
0
16 Dec 2019
Sampling for Bayesian Mixture Models: MCMC with Polynomial-Time Mixing
Wenlong Mou
Nhat Ho
Martin J. Wainwright
Peter L. Bartlett
Sai Li
166
9
0
11 Dec 2019
Adversarially Robust Low Dimensional Representations
Annual Conference Computational Learning Theory (COLT), 2019
Pranjal Awasthi
Vaggos Chatziafratis
Xue Chen
Aravindan Vijayaraghavan
AAML
OOD
286
12
0
29 Nov 2019
Sparse Density Estimation with Measurement Errors
Xiaowei Yang
Huiming Zhang
Haoyu Wei
Shouzheng Zhang
377
3
0
14 Nov 2019
MAP Clustering under the Gaussian Mixture Model via Mixed Integer Nonlinear Optimization
Patrick Flaherty
Pitchaya Wiratchotisatian
John A. Lee
Zhou Tang
Andrew C. Trapp
126
3
0
08 Nov 2019
Iterative Algorithm for Discrete Structure Recovery
Annals of Statistics (Ann. Stat.), 2019
Chao Gao
A. Zhang
860
33
0
04 Nov 2019
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Neural Information Processing Systems (NeurIPS), 2019
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
111
29
0
28 Oct 2019
Gaussian Mixture Clustering Using Relative Tests of Fit
Purvasha Chakravarti
Sivaraman Balakrishnan
Larry A. Wasserman
134
10
0
07 Oct 2019
A Diffusion Process Perspective on Posterior Contraction Rates for Parameters
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
Wenlong Mou
Nhat Ho
Martin J. Wainwright
Peter L. Bartlett
Sai Li
206
16
0
03 Sep 2019
Randomly initialized EM algorithm for two-component Gaussian mixture achieves near optimality in
O
(
n
)
O(\sqrt{n})
O
(
n
)
iterations
Mathematical Statistics and Learning (MSL), 2019
Yihong Wu
Harrison H. Zhou
362
48
0
28 Aug 2019
ZeroER: Entity Resolution using Zero Labeled Examples
Renzhi Wu
Sanya Chaba
Saurabh Sawlani
Xu Chu
Saravanan Thirumuruganathan
225
102
0
16 Aug 2019
Path Length Bounds for Gradient Descent and Flow
Journal of machine learning research (JMLR), 2019
Chirag Gupta
Sivaraman Balakrishnan
Aaditya Ramdas
237
15
0
02 Aug 2019
A Theoretical Case Study of Structured Variational Inference for Community Detection
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Mingzhang Yin
Y. X. R. Wang
Purnamrita Sarkar
207
8
0
29 Jul 2019
SuperMix: Sparse Regularization for Mixtures
Yohann De Castro
S. Gadat
C. Marteau
Cathy Maugis
124
0
0
23 Jul 2019
Comparing EM with GD in Mixture Models of Two Components
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
Guojun Zhang
Pascal Poupart
George Trimponias
183
1
0
08 Jul 2019
Max-Affine Regression: Provable, Tractable, and Near-Optimal Statistical Estimation
Avishek Ghosh
A. Pananjady
Adityanand Guntuboyina
Kannan Ramchandran
160
27
0
21 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
IEEE Transactions on Cybernetics (IEEE Trans. Cybern.), 2019
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
181
618
0
17 Jun 2019
Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities
Neural Information Processing Systems (NeurIPS), 2019
Wei Qian
Yuqian Zhang
Yudong Chen
138
10
0
16 Jun 2019
Learning Mixtures of Graphs from Epidemic Cascades
International Conference on Machine Learning (ICML), 2019
Jessica Hoffmann
Soumya Basu
Surbhi Goel
Constantine Caramanis
158
5
0
14 Jun 2019
Learning in Gated Neural Networks
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Ashok Vardhan Makkuva
Sewoong Oh
Sreeram Kannan
Pramod Viswanath
167
13
0
06 Jun 2019
EM Converges for a Mixture of Many Linear Regressions
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jeongyeol Kwon
Constantine Caramanis
138
41
0
28 May 2019
A view of Estimation of Distribution Algorithms through the lens of Expectation-Maximization
David H. Brookes
A. Busia
Clara Fannjiang
Kevin Patrick Murphy
Jennifer Listgarten
495
24
0
24 May 2019
List-Decodable Linear Regression
Neural Information Processing Systems (NeurIPS), 2019
Sushrut Karmalkar
Adam R. Klivans
Pravesh Kothari
233
79
0
14 May 2019
Sparse Tensor Additive Regression
Botao Hao
Boxiang Wang
Pengyuan Wang
Jingfei Zhang
Jian Yang
W. Sun
MedIm
335
29
0
31 Mar 2019
Convergence of Parameter Estimates for Regularized Mixed Linear Regression Models
IEEE Conference on Decision and Control (CDC), 2019
Taiyao Wang
I. Paschalidis
878
7
0
21 Mar 2019
Analysis of a Generalized Expectation-Maximization Algorithm for Gaussian Mixture Models: A Control Systems Perspective
International Journal of Control (IJC), 2019
Sarthak Chatterjee
O. Romero
S. Pequito
179
5
0
03 Mar 2019
Learning rates for Gaussian mixtures under group invariance
Victor-Emmanuel Brunel
120
0
0
28 Feb 2019
On the Analysis of EM for truncated mixtures of two Gaussians
Sai Ganesh Nagarajan
Ioannis Panageas
231
15
0
19 Feb 2019
Iterative Least Trimmed Squares for Mixed Linear Regression
Neural Information Processing Systems (NeurIPS), 2019
Yanyao Shen
Sujay Sanghavi
219
25
0
10 Feb 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Annual Conference Computational Learning Theory (COLT), 2019
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
221
93
0
02 Feb 2019
Sharp Analysis of Expectation-Maximization for Weakly Identifiable Models
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Raaz Dwivedi
Nhat Ho
K. Khamaru
Martin J. Wainwright
Sai Li
Bin Yu
316
38
0
01 Feb 2019
High Dimensional Robust
M
M
M
-Estimation: Arbitrary Corruption and Heavy Tails
Liu Liu
Tianyang Li
Constantine Caramanis
187
14
0
24 Jan 2019
Learning with Bad Training Data via Iterative Trimmed Loss Minimization
Yanyao Shen
Sujay Sanghavi
FedML
140
4
0
28 Oct 2018
Benefits of over-parameterization with EM
Ji Xu
Daniel J. Hsu
A. Maleki
377
31
0
26 Oct 2018
Global Convergence of EM Algorithm for Mixtures of Two Component Linear Regression
Jeongyeol Kwon
Wei Qian
Constantine Caramanis
Yudong Chen
Damek Davis
335
58
0
12 Oct 2018
Statistical Convergence of the EM Algorithm on Gaussian Mixture Models
Ruofei Zhao
Yuanzhi Li
Yuekai Sun
131
51
0
09 Oct 2018
Singularity, Misspecification, and the Convergence Rate of EM
Raaz Dwivedi
Nhat Ho
K. Khamaru
Sai Li
Martin J. Wainwright
Bin Yu
217
69
0
01 Oct 2018
On the Behavior of the Expectation-Maximization Algorithm for Mixture Models
Babak Barazandeh
Meisam Razaviyayn
103
19
0
24 Sep 2018
Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes
C. J. Li
Zhaoran Wang
Han Liu
DiffM
202
21
0
29 Aug 2018
Network Inference from Temporal-Dependent Grouped Observations
Yunpeng Zhao
118
2
0
25 Aug 2018
Curse of Heterogeneity: Computational Barriers in Sparse Mixture Models and Phase Retrieval
Jianqing Fan
Han Liu
Zhaoran Wang
Zhuoran Yang
189
22
0
21 Aug 2018
Optimal estimation of Gaussian mixtures via denoised method of moments
Annals of Statistics (Ann. Stat.), 2018
Yihong Wu
Pengkun Yang
269
82
0
19 Jul 2018
Statistical Inference with Local Optima
Yen-Chi Chen
145
9
0
12 Jul 2018
A Hierarchical Bayesian Linear Regression Model with Local Features for Stochastic Dynamics Approximation
Behnoosh Parsa
K. Rajasekaran
Franziska Meier
A. Banerjee
102
5
0
11 Jul 2018
Beyond Backprop: Online Alternating Minimization with Auxiliary Variables
A. Choromańska
Benjamin Cowen
Yara Rizk
Ronny Luss
Mattia Rigotti
...
Brian Kingsbury
Paolo Diachille
V. Gurev
Ravi Tejwani
Djallel Bouneffouf
318
57
0
24 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
341
103
0
14 Jun 2018
High Dimensional Robust Sparse Regression
Liu Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
299
74
0
29 May 2018
Hypergraph Spectral Clustering in the Weighted Stochastic Block Model
Kwangjun Ahn
Kangwook Lee
Changho Suh
184
69
0
23 May 2018
Previous
1
2
3
4
5
6
Next