ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.0524
  4. Cited By
Likelihood free inference for Markov processes: a comparison

Likelihood free inference for Markov processes: a comparison

2 October 2014
J. Owen
D. Wilkinson
Colin S. Gillespie
ArXiv (abs)PDFHTML

Papers citing "Likelihood free inference for Markov processes: a comparison"

11 / 11 papers shown
Title
Stratified distance space improves the efficiency of sequential samplers
  for approximate Bayesian computation
Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation
Henri Pesonen
J. Corander
54
0
0
30 Dec 2023
Guided sequential ABC schemes for intractable Bayesian models
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
102
8
0
24 Jun 2022
Accelerating inference for stochastic kinetic models
Accelerating inference for stochastic kinetic models
Tom Lowe
Andrew Golightly
Chris Sherlock
77
5
0
06 Jun 2022
Parameter inference for a stochastic kinetic model of expanded
  polyglutamine proteins
Parameter inference for a stochastic kinetic model of expanded polyglutamine proteins
Holly F. Fisher
R. Boys
Colin S. Gillespie
C. Proctor
Andrew Golightly
13
0
0
16 Sep 2020
Exact Bayesian inference for discretely observed Markov Jump Processes
  using finite rate matrices
Exact Bayesian inference for discretely observed Markov Jump Processes using finite rate matrices
Chris Sherlock
Andrew Golightly
52
3
0
16 Dec 2019
Stratified sampling and bootstrapping for approximate Bayesian
  computation
Stratified sampling and bootstrapping for approximate Bayesian computation
Umberto Picchini
R. Everitt
47
1
0
20 May 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
400
332
0
17 May 2019
Bayesian inference for a partially observed birth-death process using
  data on proportions
Bayesian inference for a partially observed birth-death process using data on proportions
R. Boys
H. Ainsworth
Colin S. Gillespie
33
2
0
12 Mar 2018
Correlated pseudo-marginal schemes for time-discretised stochastic
  kinetic models
Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models
Andrew Golightly
E. Bradley
Tom Lowe
Colin S. Gillespie
56
12
0
20 Feb 2018
Adapting the ABC distance function
Adapting the ABC distance function
D. Prangle
94
94
0
03 Jul 2015
Approximate maximum likelihood estimation using data-cloning ABC
Approximate maximum likelihood estimation using data-cloning ABC
Umberto Picchini
Rachele Anderson
49
13
0
23 May 2015
1