ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.1931
  4. Cited By
Coherence Motivated Sampling and Convergence Analysis of Least-Squares
  Polynomial Chaos Regression

Coherence Motivated Sampling and Convergence Analysis of Least-Squares Polynomial Chaos Regression

7 October 2014
Jerrad Hampton
Alireza Doostan
ArXiv (abs)PDFHTML

Papers citing "Coherence Motivated Sampling and Convergence Analysis of Least-Squares Polynomial Chaos Regression"

29 / 29 papers shown
Title
Multi-fidelity Machine Learning for Uncertainty Quantification and
  Optimization
Multi-fidelity Machine Learning for Uncertainty Quantification and Optimization
Ruda Zhang
Negin Alemazkoor
AI4CE
111
5
0
30 Oct 2024
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAttFedMLTDI
148
7
0
02 Oct 2024
Agnostic Active Learning of Single Index Models with Linear Sample
  Complexity
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
Aarshvi Gajjar
Wai Ming Tai
Xingyu Xu
Chinmay Hegde
Yi Li
Chris Musco
132
10
0
15 May 2024
Signal reconstruction using determinantal sampling
Signal reconstruction using determinantal sampling
Ayoub Belhadji
Rémi Bardenet
P. Chainais
73
4
0
13 Oct 2023
Improved Active Learning via Dependent Leverage Score Sampling
Improved Active Learning via Dependent Leverage Score Sampling
Atsushi Shimizu
Xiaoou Cheng
Chris Musco
Jonathan Weare
FedML
120
8
0
08 Oct 2023
CS4ML: A general framework for active learning with arbitrary data based
  on Christoffel functions
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
164
6
0
01 Jun 2023
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Nuojin Cheng
Osman Asif Malik
Subhayan De
Stephen Becker
Alireza Doostan
122
11
0
25 May 2023
Self-reinforced polynomial approximation methods for concentrated
  probability densities
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
69
6
0
05 Mar 2023
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Aarshvi Gajjar
Chinmay Hegde
Christopher Musco
155
12
0
24 Oct 2022
CAS4DL: Christoffel Adaptive Sampling for function approximation via
  Deep Learning
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
121
11
0
25 Aug 2022
A Stable Jacobi polynomials based least squares regression estimator
  associated with an ANOVA decomposition model
A Stable Jacobi polynomials based least squares regression estimator associated with an ANOVA decomposition model
Mohamed Jebalia
Abderrazek Karoui
31
0
0
04 Aug 2022
Sensitivity-enhanced generalized polynomial chaos for efficient
  uncertainty quantification
Sensitivity-enhanced generalized polynomial chaos for efficient uncertainty quantification
Kyriakos D. Kantarakias
G. Papadakis
25
9
0
30 Jun 2022
On efficient algorithms for computing near-best polynomial
  approximations to high-dimensional, Hilbert-valued functions from limited
  samples
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
132
11
0
25 Mar 2022
GenMod: A generative modeling approach for spectral representation of
  PDEs with random inputs
GenMod: A generative modeling approach for spectral representation of PDEs with random inputs
Jacqueline Wentz
Alireza Doostan
94
1
0
31 Jan 2022
Bi-fidelity Reduced Polynomial Chaos Expansion for Uncertainty
  Quantification
Bi-fidelity Reduced Polynomial Chaos Expansion for Uncertainty Quantification
F. Newberry
Jerrad Hampton
K. Jansen
Alireza Doostan
50
6
0
15 Apr 2021
Randomized weakly admissible meshes
Randomized weakly admissible meshes
Yiming Xu
A. Narayan
30
13
0
11 Jan 2021
Fourier Sparse Leverage Scores and Approximate Kernel Learning
Fourier Sparse Leverage Scores and Approximate Kernel Learning
T. Erdélyi
Cameron Musco
Christopher Musco
127
23
0
12 Jun 2020
Sparse Identification of Nonlinear Dynamical Systems via Reweighted
  $\ell_1$-regularized Least Squares
Sparse Identification of Nonlinear Dynamical Systems via Reweighted ℓ1\ell_1ℓ1​-regularized Least Squares
A. Cortiella
K. Park
Alireza Doostan
77
77
0
27 May 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
Boosted optimal weighted least-squares
Boosted optimal weighted least-squares
Cécile Haberstich
A. Nouy
G. Perrin
43
25
0
15 Dec 2019
Sequential sampling for optimal weighted least squares approximations in
  hierarchical spaces
Sequential sampling for optimal weighted least squares approximations in hierarchical spaces
B. Arras
M. Bachmayr
A. Cohen
44
22
0
28 May 2018
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal
  Design
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal Design
Paul Diaz
Alireza Doostan
Jerrad Hampton
102
102
0
29 Dec 2017
A preconditioning approach for improved estimation of sparse polynomial
  chaos expansions
A preconditioning approach for improved estimation of sparse polynomial chaos expansions
Negin Alemazkoor
Hadi Meidani
72
9
0
22 Sep 2017
Least Squares Polynomial Chaos Expansion: A Review of Sampling
  Strategies
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
M. Hadigol
Alireza Doostan
87
134
0
23 Jun 2017
On the Sampling Problem for Kernel Quadrature
On the Sampling Problem for Kernel Quadrature
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
105
29
0
11 Jun 2017
Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)
Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)
Jerrad Hampton
Alireza Doostan
100
44
0
03 Feb 2017
Optimal weighted least-squares methods
Optimal weighted least-squares methods
A. Cohen
G. Migliorati
119
212
0
01 Aug 2016
On Polynomial Chaos Expansion via Gradient-enhanced
  $\ell_1$-minimization
On Polynomial Chaos Expansion via Gradient-enhanced ℓ1\ell_1ℓ1​-minimization
Jigen Peng
Jerrad Hampton
Alireza Doostan
120
80
0
01 Jun 2015
Efficient Bayesian experimentation using an expected information gain
  lower bound
Efficient Bayesian experimentation using an expected information gain lower bound
Panagiotis Tsilifis
R. Ghanem
P. Hajali
118
47
0
30 May 2015
1