ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.4208
  4. Cited By
Asymptotically Honest Confidence Regions for High Dimensional Parameters
  by the Desparsified Conservative Lasso

Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso

15 October 2014
Mehmet Caner
Anders Bredahl Kock
ArXivPDFHTML

Papers citing "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso"

6 / 6 papers shown
Title
Uncertainty quantification for sparse Fourier recovery
Uncertainty quantification for sparse Fourier recovery
F. Hoppe
Felix Krahmer
C. M. Verdun
Marion I. Menzel
Holger Rauhut
27
7
0
30 Dec 2022
Asymptotic normality in linear regression with approximately sparse
  structure
Asymptotic normality in linear regression with approximately sparse structure
Saulius Jokubaitis
R. Leipus
8
1
0
08 Mar 2022
Quantile Graphical Models: Prediction and Conditional Independence with
  Applications to Systemic Risk
Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk
A. Belloni
Mingli Chen
Victor Chernozhukov
13
7
0
01 Jul 2016
Hypothesis Testing in High-Dimensional Regression under the Gaussian
  Random Design Model: Asymptotic Theory
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
Adel Javanmard
Andrea Montanari
99
160
0
17 Jan 2013
Adaptive robust variable selection
Adaptive robust variable selection
Jianqing Fan
Yingying Fan
Emre Barut
86
197
0
22 May 2012
Confidence Sets Based on Sparse Estimators Are Necessarily Large
Confidence Sets Based on Sparse Estimators Are Necessarily Large
B. M. Potscher
91
41
0
07 Nov 2007
1