Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.03854
Cited By
v1
v2 (latest)
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
16 January 2015
Kevin Vu
John C. Snyder
Li Li
M. Rupp
Brandon F. Chen
Tarek Khelif
K. Müller
K. Burke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals"
7 / 7 papers shown
Title
Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension
Sergei Manzhos
Manabu Ihara
99
8
0
17 Nov 2023
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
Vivin Vinod
Sayan Maity
Peter Zaspel
Ulrich Kleinekathöfer
AI4CE
70
9
0
18 May 2023
The loss of the property of locality of the kernel in high-dimensional Gaussian process regression on the example of the fitting of molecular potential energy surfaces
Sergei Manzhos
Manabu Ihara
GP
23
6
0
21 Nov 2022
Model inference for Ordinary Differential Equations by parametric polynomial kernel regression
David K. E. Green
F. Rindler
33
2
0
06 Aug 2019
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
61
63
0
19 Dec 2017
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
121
607
0
09 Sep 2016
Understanding Machine-learned Density Functionals
Li Li
John C. Snyder
I. Pelaschier
Jessica Huang
U. Niranjan
Paul Duncan
M. Rupp
K. Müller
K. Burke
116
152
0
04 Apr 2014
1