ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.03854
  4. Cited By
Understanding Kernel Ridge Regression: Common behaviors from simple
  functions to density functionals
v1v2 (latest)

Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals

16 January 2015
Kevin Vu
John C. Snyder
Li Li
M. Rupp
Brandon F. Chen
Tarek Khelif
K. Müller
K. Burke
ArXiv (abs)PDFHTML

Papers citing "Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals"

7 / 7 papers shown
Title
Degeneration of kernel regression with Matern kernels into low-order
  polynomial regression in high dimension
Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension
Sergei Manzhos
Manabu Ihara
99
8
0
17 Nov 2023
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
Multi-Fidelity Machine Learning for Excited State Energies of Molecules
Vivin Vinod
Sayan Maity
Peter Zaspel
Ulrich Kleinekathöfer
AI4CE
70
9
0
18 May 2023
The loss of the property of locality of the kernel in high-dimensional
  Gaussian process regression on the example of the fitting of molecular
  potential energy surfaces
The loss of the property of locality of the kernel in high-dimensional Gaussian process regression on the example of the fitting of molecular potential energy surfaces
Sergei Manzhos
Manabu Ihara
GP
23
6
0
21 Nov 2022
Model inference for Ordinary Differential Equations by parametric
  polynomial kernel regression
Model inference for Ordinary Differential Equations by parametric polynomial kernel regression
David K. E. Green
F. Rindler
33
2
0
06 Aug 2019
Metadynamics for Training Neural Network Model Chemistries: a
  Competitive Assessment
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
61
63
0
19 Dec 2017
By-passing the Kohn-Sham equations with machine learning
By-passing the Kohn-Sham equations with machine learning
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
121
607
0
09 Sep 2016
Understanding Machine-learned Density Functionals
Understanding Machine-learned Density Functionals
Li Li
John C. Snyder
I. Pelaschier
Jessica Huang
U. Niranjan
Paul Duncan
M. Rupp
K. Müller
K. Burke
116
152
0
04 Apr 2014
1