ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.06794
  4. Cited By
Computing Functions of Random Variables via Reproducing Kernel Hilbert
  Space Representations

Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations

27 January 2015
Bernhard Schölkopf
Krikamol Muandet
Kenji Fukumizu
J. Peters
ArXiv (abs)PDFHTML

Papers citing "Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations"

13 / 13 papers shown
Title
Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy
Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy
Basant Sharma
A. K. Singh
132
0
0
31 Jan 2025
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
100
46
0
01 Apr 2022
Non Holonomic Collision Avoidance of Dynamic Obstacles under
  Non-Parametric Uncertainty: A Hilbert Space Approach
Non Holonomic Collision Avoidance of Dynamic Obstacles under Non-Parametric Uncertainty: A Hilbert Space Approach
Unni Krishnan
Anish Gupta
Sasi Kiran
Ajay Shrihari
Vanshil Shah
A. K. Singh
Madhava Krishna
20
3
0
24 Dec 2021
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
118
84
0
10 Feb 2020
A Kernel Mean Embedding Approach to Reducing Conservativeness in
  Stochastic Programming and Control
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control
Jia Jie Zhu
Moritz Diehl
Bernhard Schölkopf
39
8
0
28 Jan 2020
Dimensionality Reduction of Complex Metastable Systems via Kernel
  Embeddings of Transition Manifolds
Dimensionality Reduction of Complex Metastable Systems via Kernel Embeddings of Transition Manifolds
A. Bittracher
Stefan Klus
B. Hamzi
P. Koltai
Christof Schütte
68
22
0
18 Apr 2019
Solving Chance Constrained Optimization under Non-Parametric Uncertainty
  Through Hilbert Space Embedding
Solving Chance Constrained Optimization under Non-Parametric Uncertainty Through Hilbert Space Embedding
Bharath Gopalakrishnan
A. K. Singh
K. M. Krishna
Tianyi Zhou
110
23
0
22 Nov 2018
Counterfactual Mean Embeddings
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CMLOffRL
101
40
0
22 May 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
215
36
0
13 Feb 2018
Differentially Private Database Release via Kernel Mean Embeddings
Differentially Private Database Release via Kernel Mean Embeddings
Matej Balog
Ilya O. Tolstikhin
Bernhard Schölkopf
SyDa
144
38
0
04 Oct 2017
Characteristic and Universal Tensor Product Kernels
Characteristic and Universal Tensor Product Kernels
Z. Szabó
Bharath K. Sriperumbudur
179
72
0
28 Aug 2017
Sketching for Large-Scale Learning of Mixture Models
Sketching for Large-Scale Learning of Mixture Models
Nicolas Keriven
Anthony Bourrier
Rémi Gribonval
Patrick Pérez
76
75
0
09 Jun 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
152
749
0
31 May 2016
1