ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.01988
  4. Cited By
Computational and Statistical Boundaries for Submatrix Localization in a
  Large Noisy Matrix

Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix

6 February 2015
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
ArXivPDFHTML

Papers citing "Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix"

6 / 6 papers shown
Title
Inferring Hidden Structures in Random Graphs
Inferring Hidden Structures in Random Graphs
Wasim Huleihel
9
7
0
05 Oct 2021
Random Subgraph Detection Using Queries
Random Subgraph Detection Using Queries
Wasim Huleihel
A. Mazumdar
S. Pal
18
6
0
02 Oct 2021
A Goodness-of-fit Test on the Number of Biclusters in a Relational Data
  Matrix
A Goodness-of-fit Test on the Number of Biclusters in a Relational Data Matrix
C. Watanabe
Taiji Suzuki
17
0
0
23 Feb 2021
Computationally efficient sparse clustering
Computationally efficient sparse clustering
Matthias Löffler
Alexander S. Wein
Afonso S. Bandeira
22
14
0
21 May 2020
Reducibility and Statistical-Computational Gaps from Secret Leakage
Reducibility and Statistical-Computational Gaps from Secret Leakage
Matthew Brennan
Guy Bresler
19
85
0
16 May 2020
Tensor SVD: Statistical and Computational Limits
Tensor SVD: Statistical and Computational Limits
Anru R. Zhang
Dong Xia
21
167
0
08 Mar 2017
1