Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03939
Cited By
Polynomial-Chaos-based Kriging
13 February 2015
R. Schöbi
Bruno Sudret
J. Wiart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Polynomial-Chaos-based Kriging"
24 / 24 papers shown
Title
Spline Dimensional Decomposition with Interpolation-based Optimal Knot Selection for Stochastic Dynamic Analysis
Yeonsu Kim
Junhan Lee
John T. Hwang
Bingran Wang
Dongjin Lee
39
0
0
19 May 2025
Surrogate modeling for probability distribution estimation:uniform or adaptive design?
Maijia Su
Ziqi Wang
O. Bursi
M. Broccardo
41
2
0
10 Apr 2024
Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis
M. Moustapha
Pietro Parisi
S. Marelli
Bruno Sudret
18
10
0
31 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
113
81
0
07 May 2023
Active learning for structural reliability analysis with multiple limit state functions through variance-enhanced PC-Kriging surrogate models
A. J.Moran
P. G. Morato
P. Rigo
AI4CE
36
0
0
23 Feb 2023
Multielement polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems
J. C. García-Merino
C. Calvo-Jurado
E. Martínez-Paneda
E. García-Macías
47
10
0
05 Dec 2022
Recent Advances in Uncertainty Quantification Methods for Engineering Problems
Dinesh Kumar
Farid Ahmed
S. Usman
A. Alajo
S. B. Alam
111
8
0
06 Nov 2022
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)
Paul Novello
Gaël Poëtte
D. Lugato
S. Peluchon
P. Congedo
AI4CE
62
8
0
27 Sep 2022
A connection between probability, physics and neural networks
Sascha Ranftl
PINN
70
9
0
26 Sep 2022
Machine Learning in Aerodynamic Shape Optimization
Ji-chao Li
Xiaosong Du
J. Martins
AI4CE
91
194
0
15 Feb 2022
State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning
Sourav Das
S. Tesfamariam
PINN
AI4CE
79
20
0
13 Feb 2022
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty
Paz Fink Shustin
Shashanka Ubaru
Vasileios Kalantzis
L. Horesh
H. Avron
58
2
0
10 Feb 2022
Deep convolutional neural network for shape optimization using level-set approach
Wrik Mallik
N. Farvolden
J. Jelovica
R. Jaiman
29
3
0
17 Jan 2022
Gradient-enhanced multifidelity neural networks for high-dimensional function approximation
J. Nagawkar
Leifur Þ. Leifsson
27
0
0
23 Mar 2021
Simulation free reliability analysis: A physics-informed deep learning based approach
S. Chakraborty
AI4CE
51
16
0
04 May 2020
Stochastic spectral embedding
S. Marelli
Paul Wagner
C. Lataniotis
Bruno Sudret
60
23
0
09 Apr 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
78
156
0
04 Feb 2020
Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
Jiangjiang Zhang
Q. Zheng
Dingjiang Chen
Laosheng Wu
L. Zeng
88
36
0
10 Jul 2018
On efficient global optimization via universal Kriging surrogate models
P. Palar
K. Shimoyama
14
42
0
23 Mar 2018
Gradient-based Optimization for Regression in the Functional Tensor-Train Format
Alex A. Gorodetsky
J. Jakeman
69
34
0
03 Jan 2018
The Gaussian process modelling module in UQLab
C. Lataniotis
S. Marelli
Bruno Sudret
GP
20
11
0
27 Sep 2017
Hierarchical Kriging for multi-fidelity aero-servo-elastic simulators - Application to extreme loads on wind turbines
Imad Abdallah
S. Marelli
Bruno Sudret
44
32
0
22 Sep 2017
Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes
Loic Le Gratiet
S. Marelli
Bruno Sudret
66
157
0
14 Jun 2016
Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation
V. Yaghoubi
S. Marelli
Bruno Sudret
T. Abrahamsson
25
52
0
06 Jun 2016
1