ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.03188
  4. Cited By
Optimal prediction for sparse linear models? Lower bounds for
  coordinate-separable M-estimators
v1v2 (latest)

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators

11 March 2015
Yuchen Zhang
Martin J. Wainwright
Michael I. Jordan
ArXiv (abs)PDFHTML

Papers citing "Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators"

10 / 10 papers shown
Title
Distributional Hardness Against Preconditioned Lasso via Erasure-Robust
  Designs
Distributional Hardness Against Preconditioned Lasso via Erasure-Robust Designs
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Dhruv Rohatgi
45
2
0
05 Mar 2022
Grouped Variable Selection with Discrete Optimization: Computational and
  Statistical Perspectives
Grouped Variable Selection with Discrete Optimization: Computational and Statistical Perspectives
Hussein Hazimeh
Rahul Mazumder
P. Radchenko
415
27
0
14 Apr 2021
Sparse PCA from Sparse Linear Regression
Sparse PCA from Sparse Linear Regression
Guy Bresler
Sung Min Park
Madalina Persu
125
10
0
25 Nov 2018
Finite-sample analysis of M-estimators using self-concordance
Finite-sample analysis of M-estimators using self-concordance
Dmitrii Ostrovskii
Francis R. Bach
77
52
0
16 Oct 2018
The noise barrier and the large signal bias of the Lasso and other
  convex estimators
The noise barrier and the large signal bias of the Lasso and other convex estimators
Pierre C. Bellec
63
18
0
04 Apr 2018
Maximum Regularized Likelihood Estimators: A General Prediction Theory
  and Applications
Maximum Regularized Likelihood Estimators: A General Prediction Theory and Applications
Rui Zhuang
Johannes Lederer
59
15
0
09 Oct 2017
Subset Selection with Shrinkage: Sparse Linear Modeling when the SNR is
  low
Subset Selection with Shrinkage: Sparse Linear Modeling when the SNR is low
Rahul Mazumder
P. Radchenko
Antoine Dedieu
436
59
0
10 Aug 2017
Approximate $l_0$-penalized estimation of piecewise-constant signals on
  graphs
Approximate l0l_0l0​-penalized estimation of piecewise-constant signals on graphs
Z. Fan
Leying Guan
71
21
0
04 Mar 2017
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Minwoo Chae
Lizhen Lin
David B. Dunson
77
15
0
06 Aug 2016
Support recovery without incoherence: A case for nonconvex
  regularization
Support recovery without incoherence: A case for nonconvex regularization
Po-Ling Loh
Martin J. Wainwright
200
169
0
17 Dec 2014
1