ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.03234
  4. Cited By
Uncertainty Quantification for Matrix Compressed Sensing and Quantum
  Tomography Problems
v1v2 (latest)

Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems

13 April 2015
Alexandra Carpentier
Jens Eisert
David Gross
Richard Nickl
ArXiv (abs)PDFHTML

Papers citing "Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems"

4 / 4 papers shown
Title
Inference for Low-rank Tensors -- No Need to Debias
Inference for Low-rank Tensors -- No Need to Debias
Dong Xia
Anru R. Zhang
Yuchen Zhou
99
18
0
29 Dec 2020
Statistical Inferences of Linear Forms for Noisy Matrix Completion
Statistical Inferences of Linear Forms for Noisy Matrix Completion
Dong Xia
M. Yuan
97
41
0
31 Aug 2019
Local asymptotic equivalence of pure quantum states ensembles and
  quantum Gaussian white noise
Local asymptotic equivalence of pure quantum states ensembles and quantum Gaussian white noise
C. Butucea
M. Guţă
M. Nussbaum
59
3
0
09 May 2017
Adaptive confidence sets for matrix completion
Adaptive confidence sets for matrix completion
Alexandra Carpentier
Olga Klopp
Matthias Loffler
Richard Nickl
68
27
0
17 Aug 2016
1