Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.05823
Cited By
Normal Bandits of Unknown Means and Variances: Asymptotic Optimality, Finite Horizon Regret Bounds, and a Solution to an Open Problem
22 April 2015
Wesley Cowan
Junya Honda
M. Katehakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Normal Bandits of Unknown Means and Variances: Asymptotic Optimality, Finite Horizon Regret Bounds, and a Solution to an Open Problem"
8 / 8 papers shown
Title
Asymptotic Behavior of Minimal-Exploration Allocation Policies: Almost Sure, Arbitrarily Slow Growing Regret
Wesley Cowan
M. Katehakis
106
14
0
12 May 2015
An Asymptotically Optimal Policy for Uniform Bandits of Unknown Support
Wesley Cowan
M. Katehakis
112
27
0
08 May 2015
On Minimax Optimal Offline Policy Evaluation
Lihong Li
Rémi Munos
Csaba Szepesvári
OffRL
53
16
0
12 Sep 2014
Near-optimal Reinforcement Learning in Factored MDPs
Ian Osband
Benjamin Van Roy
69
121
0
15 Mar 2014
Optimality of Thompson Sampling for Gaussian Bandits Depends on Priors
Junya Honda
Akimichi Takemura
49
63
0
08 Nov 2013
Kullback-Leibler upper confidence bounds for optimal sequential allocation
Olivier Cappé
Aurélien Garivier
Odalric-Ambrym Maillard
Rémi Munos
Gilles Stoltz
96
394
0
03 Oct 2012
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs
Peter L. Bartlett
Ambuj Tewari
76
280
0
09 May 2012
An Asymptotically Optimal Policy for Finite Support Models in the Multiarmed Bandit Problem
Junya Honda
Akimichi Takemura
99
121
0
17 May 2009
1