ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.01221
  4. Cited By
The Configurable SAT Solver Challenge (CSSC)
v1v2 (latest)

The Configurable SAT Solver Challenge (CSSC)

5 May 2015
Frank Hutter
Marius Lindauer
A. Balint
Sam Bayless
Holger Hoos
Kevin Leyton-Brown
    LRM
ArXiv (abs)PDFHTML

Papers citing "The Configurable SAT Solver Challenge (CSSC)"

13 / 13 papers shown
Title
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
92
16
0
21 Apr 2023
On the Configuration of More and Less Expressive Logic Programs
On the Configuration of More and Less Expressive Logic Programs
Carmine Dodaro
Marco Maratea
Mauro Vallati
64
1
0
02 Mar 2022
CryptoMiniSat Switches-Optimization for Solving Cryptographic Instances
CryptoMiniSat Switches-Optimization for Solving Cryptographic Instances
Anastasia-Maria Leventi-Peetz
O. Zendel
Werner Lennartz
Kai Weber
26
5
0
21 Dec 2021
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
  Optimization
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
136
349
0
20 Sep 2021
DACBench: A Benchmark Library for Dynamic Algorithm Configuration
DACBench: A Benchmark Library for Dynamic Algorithm Configuration
Theresa Eimer
André Biedenkapp
Maximilian V Reimer
Steven Adriaensen
Frank Hutter
Marius Lindauer
86
29
0
18 May 2021
Reproducibility in Evolutionary Computation
Reproducibility in Evolutionary Computation
Manuel López-Ibánez
Juergen Branke
L. Paquete
149
32
0
05 Feb 2021
On the Importance of Domain Model Configuration for Automated Planning
  Engines
On the Importance of Domain Model Configuration for Automated Planning Engines
Mauro Vallati
L. Chrpa
T. McCluskey
Frank Hutter
38
8
0
15 Oct 2020
Learning Heuristic Selection with Dynamic Algorithm Configuration
Learning Heuristic Selection with Dynamic Algorithm Configuration
David Speck
André Biedenkapp
Frank Hutter
Robert Mattmüller
Marius Lindauer
92
29
0
15 Jun 2020
Improving the Performance of Stochastic Local Search for Maximum Vertex
  Weight Clique Problem Using Programming by Optimization
Improving the Performance of Stochastic Local Search for Maximum Vertex Weight Clique Problem Using Programming by Optimization
Yi Chu
Chuan Luo
Holger H. Hoos
Qingwei Lin
Haihang You
12
3
0
27 Feb 2020
On Performance Estimation in Automatic Algorithm Configuration
On Performance Estimation in Automatic Algorithm Configuration
Shengcai Liu
K. Tang
Yunwen Lei
Xin Yao
69
23
0
19 Nov 2019
Warmstarting of Model-based Algorithm Configuration
Warmstarting of Model-based Algorithm Configuration
Marius Lindauer
Frank Hutter
76
62
0
14 Sep 2017
Pitfalls and Best Practices in Algorithm Configuration
Pitfalls and Best Practices in Algorithm Configuration
Katharina Eggensperger
Marius Lindauer
Frank Hutter
94
63
0
17 May 2017
Efficient Benchmarking of Algorithm Configuration Procedures via
  Model-Based Surrogates
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates
Katharina Eggensperger
Marius Lindauer
Holger H. Hoos
Frank Hutter
Kevin Leyton-Brown
46
7
0
30 Mar 2017
1