ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.06659
  4. Cited By
Statistical and Algorithmic Perspectives on Randomized Sketching for
  Ordinary Least-Squares -- ICML

Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares -- ICML

25 May 2015
Garvesh Raskutti
Michael W. Mahoney
ArXiv (abs)PDFHTML

Papers citing "Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares -- ICML"

5 / 5 papers shown
Title
Minimax experimental design: Bridging the gap between statistical and
  worst-case approaches to least squares regression
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression
Michal Derezinski
K. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
113
25
0
04 Feb 2019
Stochastic Subsampling for Factorizing Huge Matrices
Stochastic Subsampling for Factorizing Huge Matrices
A. Mensch
Julien Mairal
Bertrand Thirion
Gaël Varoquaux
60
30
0
19 Jan 2017
On Computationally Tractable Selection of Experiments in
  Measurement-Constrained Regression Models
On Computationally Tractable Selection of Experiments in Measurement-Constrained Regression Models
Yining Wang
Adams Wei Yu
Aarti Singh
46
2
0
09 Jan 2016
Random projections for Bayesian regression
Random projections for Bayesian regression
Leo N. Geppert
K. Ickstadt
Alexander Munteanu
Jens Quedenfeld
C. Sohler
82
46
0
23 Apr 2015
A Statistical Perspective on Randomized Sketching for Ordinary
  Least-Squares
A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares
Garvesh Raskutti
Michael W. Mahoney
108
97
0
23 Jun 2014
1