Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.01367
Cited By
A Nearly Optimal and Agnostic Algorithm for Properly Learning a Mixture of k Gaussians, for any Constant k
3 June 2015
Jingkai Li
Ludwig Schmidt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Nearly Optimal and Agnostic Algorithm for Properly Learning a Mixture of k Gaussians, for any Constant k"
7 / 7 papers shown
Title
Identifiability of Nonparametric Mixture Models and Bayes Optimal Clustering
Bryon Aragam
Chen Dan
Eric Xing
Pradeep Ravikumar
72
30
0
12 Feb 2018
On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising
Sujayam Saha
Adityanand Guntuboyina
77
47
0
06 Dec 2017
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
101
233
0
10 Nov 2016
Efficient Robust Proper Learning of Log-concave Distributions
Ilias Diakonikolas
D. Kane
Alistair Stewart
82
30
0
09 Jun 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
114
513
0
21 Apr 2016
Properly Learning Poisson Binomial Distributions in Almost Polynomial Time
Ilias Diakonikolas
D. Kane
Alistair Stewart
112
28
0
12 Nov 2015
Sample-Optimal Density Estimation in Nearly-Linear Time
Jayadev Acharya
Ilias Diakonikolas
Jingkai Li
Ludwig Schmidt
125
91
0
01 Jun 2015
1