ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02465
  4. Cited By
ASlib: A Benchmark Library for Algorithm Selection
v1v2v3 (latest)

ASlib: A Benchmark Library for Algorithm Selection

8 June 2015
B. Bischl
P. Kerschke
Lars Kotthoff
Marius Lindauer
Y. Malitsky
A. Fréchette
Holger Hoos
Frank Hutter
Kevin Leyton-Brown
Kevin Tierney
Joaquin Vanschoren
ArXiv (abs)PDFHTML

Papers citing "ASlib: A Benchmark Library for Algorithm Selection"

50 / 67 papers shown
Title
Instance Selection for Dynamic Algorithm Configuration with
  Reinforcement Learning: Improving Generalization
Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization
C. Benjamins
Gjorgjina Cenikj
Ana Nikolikj
Aditya Mohan
T. Eftimov
Marius Lindauer
AI4CE
37
1
0
18 Jul 2024
Statistical Multicriteria Benchmarking via the GSD-Front
Statistical Multicriteria Benchmarking via the GSD-Front
Christoph Jansen
G. Schollmeyer
Julian Rodemann
Hannah Blocher
Thomas Augustin
92
4
0
06 Jun 2024
Frugal Algorithm Selection
Frugal Algorithm Selection
Erdem Kus
Ozgur Akgun
Nguyen Dang
Ian Miguel
33
0
0
17 May 2024
Global Benchmark Database
Global Benchmark Database
Markus Iser
Christoph Jabs
27
2
0
16 May 2024
No Panacea in Planning: Algorithm Selection for Suboptimal Multi-Agent
  Path Finding
No Panacea in Planning: Algorithm Selection for Suboptimal Multi-Agent Path Finding
Weizhe Chen
Zhihan Wang
Jiaoyang Li
Sven Koenig
B. Dilkina
74
0
0
04 Apr 2024
Characterising harmful data sources when constructing multi-fidelity
  surrogate models
Characterising harmful data sources when constructing multi-fidelity surrogate models
Nicolau Andrés-Thió
Mario Andrés Muñoz
Kate Smith-Miles
28
1
0
12 Mar 2024
Exploratory Landscape Analysis for Mixed-Variable Problems
Exploratory Landscape Analysis for Mixed-Variable Problems
Raphael Patrick Prager
Heike Trautmann
57
3
0
26 Feb 2024
PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial
  Optimization
PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial Optimization
André Hottung
Mridul Mahajan
Kevin Tierney
85
14
0
21 Feb 2024
Artificial Intelligence for Operations Research: Revolutionizing the
  Operations Research Process
Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process
Zhenan Fan
Bissan Ghaddar
Xinglu Wang
Linzi Xing
Yong Zhang
Zirui Zhou
AI4CE
99
13
0
06 Jan 2024
Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive
  Algorithm Representation
Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation
Xingyu Wu
Yan Zhong
Jibin Wu
Bingbing Jiang
Kay Chen Tan
91
6
0
22 Nov 2023
Optimizing with Low Budgets: a Comparison on the Black-box Optimization
  Benchmarking Suite and OpenAI Gym
Optimizing with Low Budgets: a Comparison on the Black-box Optimization Benchmarking Suite and OpenAI Gym
Elena Raponi
Nathanaël Carraz Rakotonirina
Jérémy Rapin
Carola Doerr
O. Teytaud
108
6
0
29 Sep 2023
Automatic Algorithm Selection for Pseudo-Boolean Optimization with Given
  Computational Time Limits
Automatic Algorithm Selection for Pseudo-Boolean Optimization with Given Computational Time Limits
Catalina Pezo
D. Hochbaum
Julio Godoy
Roberto Javier Asín Achá
16
1
0
07 Sep 2023
Does AI for science need another ImageNet Or totally different
  benchmarks? A case study of machine learning force fields
Does AI for science need another ImageNet Or totally different benchmarks? A case study of machine learning force fields
Yatao Li
Wanling Gao
Lei Wang
Lixin Sun
Zun Wang
Jianfeng Zhan
60
1
0
11 Aug 2023
Comprehensive Algorithm Portfolio Evaluation using Item Response Theory
Comprehensive Algorithm Portfolio Evaluation using Item Response Theory
Sevvandi Kandanaarachchi
K. Smith‐Miles
47
5
0
29 Jul 2023
Constructing a meta-learner for unsupervised anomaly detection
Constructing a meta-learner for unsupervised anomaly detection
M. Gutowska
Suzanne Little
A. Mccarren
29
3
0
22 Apr 2023
Explainable Model-specific Algorithm Selection for Multi-Label
  Classification
Explainable Model-specific Algorithm Selection for Multi-Label Classification
Ana Kostovska
Carola Doerr
Jannis Brugger
D. Kocev
P. Panov
T. Eftimov
48
1
0
21 Nov 2022
HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection
HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection
Lukas Fehring
Jonas Hanselle
Alexander Tornede
53
6
0
31 Oct 2022
Statistical Comparisons of Classifiers by Generalized Stochastic
  Dominance
Statistical Comparisons of Classifiers by Generalized Stochastic Dominance
Christoph Jansen
Malte Nalenz
G. Schollmeyer
Thomas Augustin
69
15
0
05 Sep 2022
Zero-Shot AutoML with Pretrained Models
Zero-Shot AutoML with Pretrained Models
Ekrem Öztürk
Fabio Ferreira
H. Jomaa
Lars Schmidt-Thieme
Josif Grabocka
Frank Hutter
VLM
115
10
0
16 Jun 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
106
39
0
27 May 2022
On the evaluation of (meta-)solver approaches
On the evaluation of (meta-)solver approaches
R. Amadini
M. Gabbrielli
Tong Liu
J. Mauro
ELMOffRL
26
1
0
17 Feb 2022
Exploring the Feature Space of TSP Instances Using Quality Diversity
Exploring the Feature Space of TSP Instances Using Quality Diversity
Jakob Bossek
Frank Neumann
64
10
0
04 Feb 2022
Predictive Machine Learning of Objective Boundaries for Solving COPs
Predictive Machine Learning of Objective Boundaries for Solving COPs
Helge Spieker
A. Gotlieb
35
0
0
04 Nov 2021
(Machine) Learning to Improve the Empirical Performance of Discrete
  Algorithms
(Machine) Learning to Improve the Empirical Performance of Discrete Algorithms
Imran Adham
J. D. Loera
Zhenyang Zhang
59
4
0
29 Sep 2021
Benchmarking Feature-based Algorithm Selection Systems for Black-box
  Numerical Optimization
Benchmarking Feature-based Algorithm Selection Systems for Black-box Numerical Optimization
Ryoji Tanabe
63
15
0
17 Sep 2021
Machine Learning for Online Algorithm Selection under Censored Feedback
Machine Learning for Online Algorithm Selection under Censored Feedback
Alexander Tornede
Viktor Bengs
Eyke Hüllermeier
83
3
0
13 Sep 2021
YAHPO Gym -- An Efficient Multi-Objective Multi-Fidelity Benchmark for
  Hyperparameter Optimization
YAHPO Gym -- An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization
Florian Pfisterer
Lennart Schneider
Julia Moosbauer
Martin Binder
B. Bischl
82
39
0
08 Sep 2021
Algorithm Selection on a Meta Level
Algorithm Selection on a Meta Level
Alexander Tornede
Lukas Gehring
Tanja Tornede
Marcel Wever
Eyke Hüllermeier
67
19
0
20 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
254
514
0
13 Jul 2021
Evaluating Meta-Feature Selection for the Algorithm Recommendation
  Problem
Evaluating Meta-Feature Selection for the Algorithm Recommendation Problem
G. Pereira
M. Santos
A. Carvalho
59
2
0
07 Jun 2021
DACBench: A Benchmark Library for Dynamic Algorithm Configuration
DACBench: A Benchmark Library for Dynamic Algorithm Configuration
Theresa Eimer
André Biedenkapp
Maximilian V Reimer
Steven Adriaensen
Frank Hutter
Marius Lindauer
86
29
0
18 May 2021
The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance
  Regression and Algorithm Selection
The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and Algorithm Selection
Anja Jankovic
Gorjan Popovski
T. Eftimov
Carola Doerr
61
23
0
19 Apr 2021
Learning How to Optimize Black-Box Functions With Extreme Limits on the
  Number of Function Evaluations
Learning How to Optimize Black-Box Functions With Extreme Limits on the Number of Function Evaluations
Carlos Ansótegui
Meinolf Sellmann
Tapan Shah
Kevin Tierney
51
4
0
18 Mar 2021
Instance Space Analysis for the Car Sequencing Problem
Instance Space Analysis for the Car Sequencing Problem
Yuan Sun
Samuel Esler
D. Thiruvady
Andreas T. Ernst
Xiaodong Li
K. Morgan
32
3
0
18 Dec 2020
Learning to Resolve Conflicts for Multi-Agent Path Finding with
  Conflict-Based Search
Learning to Resolve Conflicts for Multi-Agent Path Finding with Conflict-Based Search
Taoan Huang
B. Dilkina
Sven Koenig
85
27
0
10 Dec 2020
Towards Meta-Algorithm Selection
Towards Meta-Algorithm Selection
Alexander Tornede
Marcel Wever
Eyke Hüllermeier
63
5
0
17 Nov 2020
sunny-as2: Enhancing SUNNY for Algorithm Selection
sunny-as2: Enhancing SUNNY for Algorithm Selection
Tong Liu
R. Amadini
J. Mauro
M. Gabbrielli
19
6
0
07 Sep 2020
Collaborative Management of Benchmark Instances and their Attributes
Collaborative Management of Benchmark Instances and their Attributes
M. Iser
Luca Springer
C. Sinz
18
1
0
07 Sep 2020
Benchmarking in Optimization: Best Practice and Open Issues
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
138
112
0
07 Jul 2020
Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
  on Survival Analysis
Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis
Alexander Tornede
Marcel Wever
Stefan Werner
F. Mohr
Eyke Hüllermeier
80
13
0
06 Jul 2020
Deep Learning as a Competitive Feature-Free Approach for Automated
  Algorithm Selection on the Traveling Salesperson Problem
Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem
M. Seiler
J. Pohl
Jakob Bossek
P. Kerschke
Heike Trautmann
39
21
0
29 Jun 2020
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
129
92
0
24 Jun 2020
Landscape-Aware Fixed-Budget Performance Regression and Algorithm
  Selection for Modular CMA-ES Variants
Landscape-Aware Fixed-Budget Performance Regression and Algorithm Selection for Modular CMA-ES Variants
Anja Jankovic
Carola Doerr
66
38
0
17 Jun 2020
Towards Feature-free TSP Solver Selection: A Deep Learning Approach
Towards Feature-free TSP Solver Selection: A Deep Learning Approach
Kangfei Zhao
Shengcai Liu
Yu Rong
Jianwei Yu
71
2
0
01 Jun 2020
Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated
  Algorithm Selection
Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection
Jakob Bossek
P. Kerschke
Heike Trautmann
33
3
0
27 May 2020
Versatile Black-Box Optimization
Versatile Black-Box Optimization
Jialin Liu
A. Moreau
Mike Preuss
Baptiste Roziere
Jérémy Rapin
F. Teytaud
O. Teytaud
68
38
0
29 Apr 2020
Extreme Algorithm Selection With Dyadic Feature Representation
Extreme Algorithm Selection With Dyadic Feature Representation
Alexander Tornede
Marcel Wever
Eyke Hüllermeier
61
21
0
29 Jan 2020
Transfer Learning for Algorithm Recommendation
Transfer Learning for Algorithm Recommendation
G. Pereira
M. Santos
Edesio Alcobaça
R. G. Mantovani
A. Carvalho
45
2
0
15 Oct 2019
Best Practices for Scientific Research on Neural Architecture Search
Best Practices for Scientific Research on Neural Architecture Search
Marius Lindauer
Frank Hutter
73
144
0
05 Sep 2019
Algorithm Selection for Image Quality Assessment
Algorithm Selection for Image Quality Assessment
Markus Wagner
Hanhe Lin
Shujun Li
Dietmar Saupe
27
3
0
19 Aug 2019
12
Next