ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.03620
  4. Cited By
Sparse Proteomics Analysis - A compressed sensing-based approach for
  feature selection and classification of high-dimensional proteomics mass
  spectrometry data
v1v2v3 (latest)

Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

11 June 2015
Tim Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
A. Leichtle
J. Vybíral
Gitta Kutyniok
Christof Schütte
ArXiv (abs)PDFHTML

Papers citing "Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data"

1 / 1 papers shown
Title
MarkerMap: nonlinear marker selection for single-cell studies
MarkerMap: nonlinear marker selection for single-cell studies
Nabeel Sarwar
Wilson Gregory
George A. Kevrekidis
Soledad Villar
Bianca Dumitrascu
45
4
0
28 Jul 2022
1