ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.06438
  4. Cited By
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms

Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms

22 June 2015
Christopher De Sa
Ce Zhang
K. Olukotun
Christopher Ré
ArXivPDFHTML

Papers citing "Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms"

10 / 10 papers shown
Title
FrogWild! -- Fast PageRank Approximations on Graph Engines
FrogWild! -- Fast PageRank Approximations on Graph Engines
Ioannis Mitliagkas
Michael Borokhovich
A. Dimakis
Constantine Caramanis
45
38
0
15 Feb 2015
Deep Learning with Limited Numerical Precision
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
134
2,043
0
09 Feb 2015
Global Convergence of Stochastic Gradient Descent for Some Non-convex
  Matrix Problems
Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems
Christopher De Sa
K. Olukotun
Christopher Ré
44
150
0
05 Nov 2014
DimmWitted: A Study of Main-Memory Statistical Analytics
DimmWitted: A Study of Main-Memory Statistical Analytics
Ce Zhang
Christopher Ré
107
145
0
28 Mar 2014
Accelerated, Parallel and Proximal Coordinate Descent
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
64
372
0
20 Dec 2013
Parallel Coordinate Descent Methods for Big Data Optimization
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
85
487
0
04 Dec 2012
Low-rank Matrix Completion using Alternating Minimization
Low-rank Matrix Completion using Alternating Minimization
Prateek Jain
Praneeth Netrapalli
Sujay Sanghavi
151
1,066
0
03 Dec 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic
  Optimization
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
98
764
0
26 Sep 2011
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
142
2,272
0
28 Jun 2011
Randomized Smoothing for Stochastic Optimization
Randomized Smoothing for Stochastic Optimization
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
94
282
0
22 Mar 2011
1