Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.03003
Cited By
v1
v2 (latest)
High-Dimensional Asymptotics of Prediction: Ridge Regression and Classification
10 July 2015
Yan Sun
Stefan Wager
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High-Dimensional Asymptotics of Prediction: Ridge Regression and Classification"
32 / 82 papers shown
Title
Out-of-sample error estimate for robust M-estimators with convex penalty
Pierre C. Bellec
129
17
0
26 Aug 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
72
5
0
17 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
80
68
0
17 Jun 2020
Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
84
29
0
16 Jun 2020
Asymptotics of Ridge (less) Regression under General Source Condition
Dominic Richards
Jaouad Mourtada
Lorenzo Rosasco
88
73
0
11 Jun 2020
On the Optimal Weighted
ℓ
2
\ell_2
ℓ
2
Regularization in Overparameterized Linear Regression
Denny Wu
Ji Xu
75
123
0
10 Jun 2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
91
93
0
09 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
115
74
0
25 May 2020
Fast cross-validation for multi-penalty ridge regression
M. A. van de Wiel
M. V. Nee
A. Rauschenberger
34
3
0
19 May 2020
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Niladri S. Chatterji
Philip M. Long
95
109
0
25 Apr 2020
Regularization in High-Dimensional Regression and Classification via Random Matrix Theory
Panagiotis Lolas
84
14
0
30 Mar 2020
Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited
Wesley J. Maddox
Gregory W. Benton
A. Wilson
136
61
0
04 Mar 2020
Optimal Regularization Can Mitigate Double Descent
Preetum Nakkiran
Prayaag Venkat
Sham Kakade
Tengyu Ma
85
133
0
04 Mar 2020
The role of regularization in classification of high-dimensional noisy Gaussian mixture
Francesca Mignacco
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
58
90
0
26 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
85
83
0
19 Feb 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
82
78
0
10 Dec 2019
The Implicit Regularization of Ordinary Least Squares Ensembles
Daniel LeJeune
Hamid Javadi
Richard G. Baraniuk
143
43
0
10 Oct 2019
Ridge Regression: Structure, Cross-Validation, and Sketching
Sifan Liu
Yan Sun
CML
115
48
0
06 Oct 2019
Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting
Marc Lelarge
Léo Miolane
71
29
0
08 Jul 2019
WONDER: Weighted one-shot distributed ridge regression in high dimensions
Yan Sun
Yueqi Sheng
OffRL
92
51
0
22 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
305
747
0
19 Mar 2019
A Continuous-Time View of Early Stopping for Least Squares
Alnur Ali
J. Zico Kolter
Robert Tibshirani
104
97
0
23 Oct 2018
Optimal Covariance Estimation for Condition Number Loss in the Spiked Model
D. Donoho
Behrooz Ghorbani
141
7
0
17 Oct 2018
Asymptotics for Sketching in Least Squares Regression
Yan Sun
Sifan Liu
61
13
0
14 Oct 2018
Adapting to Unknown Noise Distribution in Matrix Denoising
Andrea Montanari
Feng Ruan
Jun Yan
100
13
0
06 Oct 2018
Distributed linear regression by averaging
Yan Sun
Yueqi Sheng
FedML
94
66
0
30 Sep 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
94
89
0
28 May 2018
On the dimension effect of regularized linear discriminant analysis
Cheng-Long Wang
Binyan Jiang
51
15
0
09 Oct 2017
Permutation methods for factor analysis and PCA
Yan Sun
82
54
0
02 Oct 2017
Optimal prediction in the linearly transformed spiked model
Edgar Dobriban
W. Leeb
A. Singer
83
20
0
07 Sep 2017
High-dimensional regression adjustments in randomized experiments
Stefan Wager
Wenfei Du
Jonathan E. Taylor
Robert Tibshirani
299
117
0
22 Jul 2016
Prediction risk for the horseshoe regression
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
Brandon T. Willard
173
16
0
16 May 2016
Previous
1
2