ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.04330
  4. Cited By
Optimal Dynamic Distributed MIS
v1v2 (latest)

Optimal Dynamic Distributed MIS

15 July 2015
K. Censor-Hillel
Elad Haramaty
Zohar Karnin
ArXiv (abs)PDFHTML

Papers citing "Optimal Dynamic Distributed MIS"

9 / 9 papers shown
Title
Finding Subgraphs in Highly Dynamic Networks
Finding Subgraphs in Highly Dynamic Networks
K. Censor-Hillel
V. I. Kolobov
Gregory Schwartzman
36
6
0
17 Sep 2020
Sleeping is Efficient: MIS in $O(1)$-rounds Node-averaged Awake
  Complexity
Sleeping is Efficient: MIS in O(1)O(1)O(1)-rounds Node-averaged Awake Complexity
Soumyottam Chatterjee
R. Gmyr
Gopal Pandurangan
65
34
0
12 Jun 2020
Input-Dynamic Distributed Algorithms for Communication Networks
Input-Dynamic Distributed Algorithms for Communication Networks
Klaus-Tycho Foerster
Janne H. Korhonen
A. Paz
Joel Rybicki
Stefan Schmid
50
3
0
15 May 2020
Parallel Batch-Dynamic $k$-Clique Counting
Parallel Batch-Dynamic kkk-Clique Counting
Laxman Dhulipala
Quanquan C. Liu
Julian Shun
Shangdi Yu
96
26
0
30 Mar 2020
Dynamic Algorithms for the Massively Parallel Computation Model
Dynamic Algorithms for the Massively Parallel Computation Model
G. Italiano
Silvio Lattanzi
Vahab S. Mirrokni
Nikos Parotsidis
41
27
0
22 May 2019
Distributed Detection of Cliques in Dynamic Networks
Distributed Detection of Cliques in Dynamic Networks
Matthias Bonne
K. Censor-Hillel
GNN
49
12
0
25 Apr 2019
Fast Deterministic Algorithms for Highly-Dynamic Networks
Fast Deterministic Algorithms for Highly-Dynamic Networks
K. Censor-Hillel
Neta Dafni
V. I. Kolobov
A. Paz
Gregory Schwartzman
67
5
0
13 Jan 2019
Local Distributed Algorithms in Highly Dynamic Networks
Local Distributed Algorithms in Highly Dynamic Networks
P. Bamberger
Fabian Kuhn
Yannic Maus
82
14
0
27 Feb 2018
Locally-Iterative Distributed (Delta + 1)-Coloring below
  Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to
  Restricted-Bandwidth Models
Locally-Iterative Distributed (Delta + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to Restricted-Bandwidth Models
Leonid Barenboim
Michael Elkin
Uri Goldenberg
64
70
0
01 Dec 2017
1