ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.06977
  4. Cited By
String and Membrane Gaussian Processes
v1v2v3v4 (latest)

String and Membrane Gaussian Processes

24 July 2015
Yves-Laurent Kom Samo
Stephen J. Roberts
ArXiv (abs)PDFHTML

Papers citing "String and Membrane Gaussian Processes"

11 / 11 papers shown
Title
Quantized Fourier and Polynomial Features for more Expressive Tensor
  Network Models
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
55
1
0
11 Sep 2023
Non-Gaussian Process Regression
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
43
2
0
07 Sep 2022
Deep Structured Mixtures of Gaussian Processes
Deep Structured Mixtures of Gaussian Processes
Martin Trapp
Robert Peharz
Franz Pernkopf
C. Rasmussen
GPTPM
66
33
0
10 Oct 2019
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
72
26
0
03 Nov 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
81
17
0
10 Oct 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Parametric Gaussian Process Regression for Big Data
Parametric Gaussian Process Regression for Big Data
M. Raissi
89
39
0
11 Apr 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
87
202
0
21 Nov 2016
Nested Kriging predictions for datasets with large number of
  observations
Nested Kriging predictions for datasets with large number of observations
D. Rullière
N. Durrande
François Bachoc
C. Chevalier
67
67
0
19 Jul 2016
Stochastic Portfolio Theory: A Machine Learning Perspective
Stochastic Portfolio Theory: A Machine Learning Perspective
Yves-Laurent Kom Samo
A. Vervuurt
40
23
0
09 May 2016
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
233
218
0
21 Jan 2014
1