ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.08754
  4. Cited By
Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural
  Networks for Image Classification

Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification

31 July 2015
Fan Wu
Peijun Hu
D. Kong
ArXiv (abs)PDFHTML

Papers citing "Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification"

14 / 14 papers shown
Relaxed Rotational Equivariance via $G$-Biases in Vision
Relaxed Rotational Equivariance via GGG-Biases in Vision
Zhiqiang Wu
Licheng Sun
Yingjie Liu
Jian Yang
Hanlin Dong
S. J. Lin
Xuan Tang
Jinpeng Mi
Bo Jin
Xian Wei
272
0
0
22 Aug 2024
Revisiting Data Augmentation for Rotational Invariance in Convolutional
  Neural Networks
Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks
F. Quiroga
Franco Ronchetti
Laura Lanzarini
A. F. Bariviera
190
48
0
12 Oct 2023
Analysis of convolutional neural network image classifiers in a
  rotationally symmetric model
Analysis of convolutional neural network image classifiers in a rotationally symmetric modelIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2022
Michael Kohler
Benjamin Kohler
161
6
0
11 May 2022
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scalesJournal of Mathematical Imaging and Vision (JMIV), 2021
Ylva Jansson
T. Lindeberg
206
27
0
11 Jun 2021
More Is More -- Narrowing the Generalization Gap by Adding
  Classification Heads
More Is More -- Narrowing the Generalization Gap by Adding Classification Heads
Roee Cates
D. Weinshall
OOD
101
0
0
09 Feb 2021
LGN-CNN: a biologically inspired CNN architecture
LGN-CNN: a biologically inspired CNN architectureNeural Networks (NN), 2019
F. Bertoni
G. Citti
A. Sarti
157
26
0
14 Nov 2019
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant
  Deep Networks
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks
Xiuyuan Cheng
Qiang Qiu
Robert Calderbank
Guillermo Sapiro
169
47
0
17 May 2018
Non-Parametric Transformation Networks
Non-Parametric Transformation Networks
Dipan K. Pal
Marios Savvides
289
7
0
14 Jan 2018
Deformable Classifiers
Deformable Classifiers
Jiajun Shen
Y. Amit
93
0
0
18 Dec 2017
Deep Rotation Equivariant Network
Deep Rotation Equivariant Network
Junying Li
Zichen Yang
Haifeng Liu
Deng Cai
242
61
0
24 May 2017
Oriented Response Networks
Oriented Response NetworksComputer Vision and Pattern Recognition (CVPR), 2017
Yanzhao Zhou
QiXiang Ye
Qiang Qiu
Jianbin Jiao
241
277
0
07 Jan 2017
Learning rotation invariant convolutional filters for texture
  classification
Learning rotation invariant convolutional filters for texture classification
Diego Marcos
Michele Volpi
D. Tuia
206
150
0
22 Apr 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
370
376
0
08 Feb 2016
Gradual DropIn of Layers to Train Very Deep Neural Networks
Gradual DropIn of Layers to Train Very Deep Neural Networks
L. Smith
Emily M. Hand
T. Doster
AI4CE
154
37
0
22 Nov 2015
1