ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.02844
19
64

What is Holding Back Convnets for Detection?

12 August 2015
Bojan Pepik
Rodrigo Benenson
Tobias Ritschel
Bernt Schiele
    ObjD
ArXivPDFHTML
Abstract

Convolutional neural networks have recently shown excellent results in general object detection and many other tasks. Albeit very effective, they involve many user-defined design choices. In this paper we want to better understand these choices by inspecting two key aspects "what did the network learn?", and "what can the network learn?". We exploit new annotations (Pascal3D+), to enable a new empirical analysis of the R-CNN detector. Despite common belief, our results indicate that existing state-of-the-art convnet architectures are not invariant to various appearance factors. In fact, all considered networks have similar weak points which cannot be mitigated by simply increasing the training data (architectural changes are needed). We show that overall performance can improve when using image renderings for data augmentation. We report the best known results on the Pascal3D+ detection and view-point estimation tasks.

View on arXiv
Comments on this paper