ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.03387
  4. Cited By
Optimal approximating Markov chains for Bayesian inference

Optimal approximating Markov chains for Bayesian inference

13 August 2015
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
ArXivPDFHTML

Papers citing "Optimal approximating Markov chains for Bayesian inference"

5 / 5 papers shown
Title
Minibatch Gibbs Sampling on Large Graphical Models
Minibatch Gibbs Sampling on Large Graphical Models
Christopher De Sa
Vincent Chen
W. Wong
9
19
0
15 Jun 2018
Importance sampling correction versus standard averages of reversible
  MCMCs in terms of the asymptotic variance
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Jordan Franks
M. Vihola
11
17
0
29 Jun 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large
  Datasets
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
26
14
0
26 Jun 2017
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
32
158
0
21 Oct 2016
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
28
107
0
13 Mar 2015
1