ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06434
  4. Cited By
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

19 November 2015
Alec Radford
Luke Metz
Soumith Chintala
    GAN
    OOD
ArXivPDFHTML

Papers citing "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks"

13 / 2,063 papers shown
Title
Learning a Predictable and Generative Vector Representation for Objects
Learning a Predictable and Generative Vector Representation for Objects
Rohit Girdhar
David Fouhey
Mikel D. Rodriguez
Abhinav Gupta
3DV
37
708
0
29 Mar 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
99
10,176
0
27 Mar 2016
Pixel-Level Domain Transfer
Pixel-Level Domain Transfer
Donggeun Yoo
Namil Kim
Sunggyun Park
Anthony S. Paek
In So Kweon
GAN
20
315
0
24 Mar 2016
A guide to convolution arithmetic for deep learning
A guide to convolution arithmetic for deep learning
Vincent Dumoulin
Francesco Visin
FAtt
3DH
HAI
16
1,534
0
23 Mar 2016
Global-Local Face Upsampling Network
Global-Local Face Upsampling Network
Oncel Tuzel
Yuichi Taguchi
J. Hershey
CVBM
SupR
18
35
0
23 Mar 2016
Generative Image Modeling using Style and Structure Adversarial Networks
Generative Image Modeling using Style and Structure Adversarial Networks
Xinyu Wang
Abhinav Gupta
GAN
33
617
0
17 Mar 2016
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
Dmitry Ulyanov
V. Lebedev
Andrea Vedaldi
Victor Lempitsky
3DH
14
943
0
10 Mar 2016
Understanding Visual Concepts with Continuation Learning
Understanding Visual Concepts with Continuation Learning
William F. Whitney
Michael Chang
Tejas D. Kulkarni
J. Tenenbaum
DRL
GAN
33
55
0
22 Feb 2016
Disentangled Representations in Neural Models
Disentangled Representations in Neural Models
William F. Whitney
OOD
OCL
DRL
30
18
0
07 Feb 2016
Improved graph-based SFA: Information preservation complements the
  slowness principle
Improved graph-based SFA: Information preservation complements the slowness principle
Alberto N. Escalante
Laurenz Wiskott
16
16
0
15 Jan 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
100
2,054
0
31 Dec 2015
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation
Francesco Visin
Marco Ciccone
Adriana Romero
Kyle Kastner
Kyunghyun Cho
Yoshua Bengio
Matteo Matteucci
Aaron Courville
VLM
SSeg
19
251
0
22 Nov 2015
Learning to Generate Images with Perceptual Similarity Metrics
Learning to Generate Images with Perceptual Similarity Metrics
Jake C. Snell
Karl Ridgeway
Renjie Liao
Brett D. Roads
Michael C. Mozer
R. Zemel
EGVM
27
177
0
19 Nov 2015
Previous
123...404142