ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.07147
  4. Cited By
A PAC Approach to Application-Specific Algorithm Selection
v1v2 (latest)

A PAC Approach to Application-Specific Algorithm Selection

23 November 2015
Rishi Gupta
Tim Roughgarden
ArXiv (abs)PDFHTML

Papers citing "A PAC Approach to Application-Specific Algorithm Selection"

35 / 35 papers shown
Title
Generalization Guarantees for Learning Branch-and-Cut Policies in Integer Programming
Generalization Guarantees for Learning Branch-and-Cut Policies in Integer Programming
Hongyu Cheng
Amitabh Basu
58
0
0
16 May 2025
A Query-Driven Approach to Space-Efficient Range Searching
A Query-Driven Approach to Space-Efficient Range Searching
Dimitris Fotakis
Andreas Kalavas
Ioannis Psarros
64
0
0
20 Feb 2025
Offline-to-online hyperparameter transfer for stochastic bandits
Dravyansh Sharma
Arun Sai Suggala
OffRL
103
4
0
06 Jan 2025
Learning-Based Heavy Hitters and Flow Frequency Estimation in Streams
Learning-Based Heavy Hitters and Flow Frequency Estimation in Streams
Rana Shahout
Michael Mitzenmacher
80
4
0
24 Jun 2024
Utilitarian Algorithm Configuration for Infinite Parameter Spaces
Utilitarian Algorithm Configuration for Infinite Parameter Spaces
Devon R. Graham
Kevin Leyton-Brown
109
0
0
28 May 2024
Learning Actionable Counterfactual Explanations in Large State Spaces
Learning Actionable Counterfactual Explanations in Large State Spaces
Keziah Naggita
Matthew R. Walter
Avrim Blum
OffRL
108
0
0
25 Apr 2024
New Guarantees for Learning Revenue Maximizing Menus of Lotteries and
  Two-Part Tariffs
New Guarantees for Learning Revenue Maximizing Menus of Lotteries and Two-Part Tariffs
Maria-Florina Balcan
Hedyeh Beyhaghi
60
4
0
22 Feb 2023
Learning Sparsity and Randomness for Data-driven Low Rank Approximation
Learning Sparsity and Randomness for Data-driven Low Rank Approximation
Tiejin Chen
Yicheng Tao
47
0
0
15 Dec 2022
Improved Generalization Bound and Learning of Sparsity Patterns for
  Data-Driven Low-Rank Approximation
Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
Shinsaku Sakaue
Taihei Oki
114
4
0
17 Sep 2022
Generalization Bounds for Data-Driven Numerical Linear Algebra
Generalization Bounds for Data-Driven Numerical Linear Algebra
Peter L. Bartlett
Piotr Indyk
Tal Wagner
95
15
0
16 Jun 2022
Formalizing Preferences Over Runtime Distributions
Formalizing Preferences Over Runtime Distributions
Devon R. Graham
Kevin Leyton-Brown
Tim Roughgarden
57
5
0
25 May 2022
Customizing ML Predictions for Online Algorithms
Customizing ML Predictions for Online Algorithms
Keerti Anand
Rong Ge
Debmalya Panigrahi
61
60
0
18 May 2022
Learning Predictions for Algorithms with Predictions
Learning Predictions for Algorithms with Predictions
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
Sergei Vassilvitskii
89
27
0
18 Feb 2022
Oracle-Efficient Online Learning for Beyond Worst-Case Adversaries
Oracle-Efficient Online Learning for Beyond Worst-Case Adversaries
Nika Haghtalab
Yanjun Han
Abhishek Shetty
Kunhe Yang
108
25
0
17 Feb 2022
Online Learning for Min Sum Set Cover and Pandora's Box
Online Learning for Min Sum Set Cover and Pandora's Box
Evangelia Gergatsouli
Christos Tzamos
56
15
0
10 Feb 2022
Robustification of Online Graph Exploration Methods
Robustification of Online Graph Exploration Methods
Franziska Eberle
Alexander Lindermayr
Nicole Megow
L. Nolke
Jens Schlöter
AAMLOOD
64
22
0
10 Dec 2021
Learning-Augmented Algorithms for Online Steiner Tree
Learning-Augmented Algorithms for Online Steiner Tree
Chenyang Xu
Benjamin Moseley
67
17
0
10 Dec 2021
Improved Sample Complexity Bounds for Branch-and-Cut
Improved Sample Complexity Bounds for Branch-and-Cut
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
86
16
0
18 Nov 2021
Machine Learning for Online Algorithm Selection under Censored Feedback
Machine Learning for Online Algorithm Selection under Censored Feedback
Alexander Tornede
Viktor Bengs
Eyke Hüllermeier
83
3
0
13 Sep 2021
Faster Matchings via Learned Duals
Faster Matchings via Learned Duals
M. Dinitz
Sungjin Im
Thomas Lavastida
Benjamin Moseley
Sergei Vassilvitskii
54
69
0
20 Jul 2021
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections
  to Weight-Sharing
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
105
78
0
08 Jun 2021
Sample Complexity of Tree Search Configuration: Cutting Planes and
  Beyond
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
63
39
0
08 Jun 2021
Data driven semi-supervised learning
Data driven semi-supervised learning
Maria-Florina Balcan
Dravyansh Sharma
82
16
0
18 Mar 2021
Generalization in portfolio-based algorithm selection
Generalization in portfolio-based algorithm selection
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
78
12
0
24 Dec 2020
Learnable and Instance-Robust Predictions for Online Matching, Flows and
  Load Balancing
Learnable and Instance-Robust Predictions for Online Matching, Flows and Load Balancing
Thomas Lavastida
Benjamin Moseley
R. Ravi
Chenyang Xu
OOD
104
59
0
23 Nov 2020
Data-driven Algorithm Design
Data-driven Algorithm Design
Maria-Florina Balcan
37
2
0
14 Nov 2020
Refined bounds for algorithm configuration: The knife-edge of dual class
  approximability
Refined bounds for algorithm configuration: The knife-edge of dual class approximability
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
71
15
0
21 Jun 2020
Smoothed Analysis of Online and Differentially Private Learning
Smoothed Analysis of Online and Differentially Private Learning
Nika Haghtalab
Tim Roughgarden
Abhishek Shetty
86
51
0
17 Jun 2020
Learning to Link
Learning to Link
Maria-Florina Balcan
Travis Dick
Manuel Lang
95
25
0
01 Jul 2019
Learning to Optimize Computational Resources: Frugal Training with
  Generalization Guarantees
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
70
16
0
26 May 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
Giulia Denevi
C. Ciliberto
Riccardo Grazzi
Massimiliano Pontil
82
110
0
25 Mar 2019
Uniform Convergence Bounds for Codec Selection
Uniform Convergence Bounds for Codec Selection
Clayton Sanford
Cyrus Cousins
E. Upfal
37
0
0
18 Dec 2018
Learning to Branch
Learning to Branch
Maria-Florina Balcan
Travis Dick
Tuomas Sandholm
Ellen Vitercik
90
173
0
27 Mar 2018
Dispersion for Data-Driven Algorithm Design, Online Learning, and
  Private Optimization
Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization
Maria-Florina Balcan
Travis Dick
Ellen Vitercik
101
75
0
08 Nov 2017
Online Optimization of Smoothed Piecewise Constant Functions
Online Optimization of Smoothed Piecewise Constant Functions
Vincent Cohen-Addad
Varun Kanade
61
25
0
07 Apr 2016
1