ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.09080
  4. Cited By
Exploiting Anonymity in Approximate Linear Programming: Scaling to Large
  Multiagent MDPs (Extended Version)
v1v2 (latest)

Exploiting Anonymity in Approximate Linear Programming: Scaling to Large Multiagent MDPs (Extended Version)

29 November 2015
P. Robbel
F. Oliehoek
Mykel J. Kochenderfer
ArXiv (abs)PDFHTML

Papers citing "Exploiting Anonymity in Approximate Linear Programming: Scaling to Large Multiagent MDPs (Extended Version)"

5 / 5 papers shown
Title
A Survey on Large-Population Systems and Scalable Multi-Agent
  Reinforcement Learning
A Survey on Large-Population Systems and Scalable Multi-Agent Reinforcement Learning
Kai Cui
Anam Tahir
Gizem Ekinci
Ahmed Elshamanhory
Yannick Eich
Mengguang Li
Heinz Koeppl
AI4CE
164
15
0
08 Sep 2022
Multi-Agent MDP Homomorphic Networks
Multi-Agent MDP Homomorphic Networks
Elise van der Pol
H. V. Hoof
F. Oliehoek
Max Welling
AI4CE
93
30
0
09 Oct 2021
Exchangeable Input Representations for Reinforcement Learning
Exchangeable Input Representations for Reinforcement Learning
John Mern
Dorsa Sadigh
Mykel J. Kochenderfer
98
4
0
19 Mar 2020
A Sufficient Statistic for Influence in Structured Multiagent
  Environments
A Sufficient Statistic for Influence in Structured Multiagent Environments
F. Oliehoek
Stefan J. Witwicki
L. Kaelbling
81
23
0
22 Jul 2019
Policy Gradient With Value Function Approximation For Collective
  Multiagent Planning
Policy Gradient With Value Function Approximation For Collective Multiagent Planning
D. Nguyen
Akshat Kumar
H. Lau
96
43
0
09 Apr 2018
1