Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.09433
Cited By
Universality laws for randomized dimension reduction, with applications
30 November 2015
Samet Oymak
J. Tropp
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universality laws for randomized dimension reduction, with applications"
43 / 43 papers shown
Title
Sketching for Convex and Nonconvex Regularized Least Squares with Sharp Guarantees
Yingzhen Yang
Ping Li
13
0
0
03 Nov 2023
Exact threshold for approximate ellipsoid fitting of random points
Antoine Maillard
Afonso S. Bandeira
14
1
0
09 Oct 2023
Universality of max-margin classifiers
Andrea Montanari
Feng Ruan
Basil Saeed
Youngtak Sohn
26
3
0
29 Sep 2023
A rate of convergence when generating stable invariant Hermitian random matrix ensembles
M. Kieburg
Jiyuan Zhang
14
0
0
14 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
20
19
0
13 Feb 2023
Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves
David Bosch
Ashkan Panahi
Ayça Özçelikkale
Devdatt Dubhash
MLT
8
2
0
06 Apr 2022
Universality of empirical risk minimization
Andrea Montanari
Basil Saeed
OOD
17
73
0
17 Feb 2022
Noisy linear inverse problems under convex constraints: Exact risk asymptotics in high dimensions
Q. Han
14
3
0
20 Jan 2022
Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression
Lijia Zhou
Frederic Koehler
Danica J. Sutherland
Nathan Srebro
87
24
0
08 Dec 2021
Beyond Independent Measurements: General Compressed Sensing with GNN Application
Alireza Naderi
Y. Plan
16
4
0
30 Oct 2021
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and Benign Overfitting
Frederic Koehler
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
11
55
0
17 Jun 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
14
93
0
02 Mar 2021
Local Tail Statistics of Heavy-Tailed Random Matrix Ensembles with Unitary Invariance
M. Kieburg
A. Monteleone
17
2
0
01 Mar 2021
On the Inherent Regularization Effects of Noise Injection During Training
Oussama Dhifallah
Yue M. Lu
11
29
0
15 Feb 2021
Sample Efficient Subspace-based Representations for Nonlinear Meta-Learning
Halil Ibrahim Gulluk
Yue Sun
Samet Oymak
Maryam Fazel
12
2
0
14 Feb 2021
Phase Transitions in Recovery of Structured Signals from Corrupted Measurements
Zhongxing Sun
Wei Cui
Yulong Liu
14
2
0
03 Jan 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
14
48
0
16 Dec 2020
Asymptotic Behavior of Adversarial Training in Binary Classification
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
AAML
13
16
0
26 Oct 2020
Universality of Linearized Message Passing for Phase Retrieval with Structured Sensing Matrices
Rishabh Dudeja
Milad Bakhshizadeh
21
12
0
24 Aug 2020
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
31
62
0
27 Jul 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
15
3
0
19 Jun 2020
Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
13
28
0
16 Jun 2020
Sharp Asymptotics and Optimal Performance for Inference in Binary Models
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
8
25
0
17 Feb 2020
Sub-Gaussian Matrices on Sets: Optimal Tail Dependence and Applications
Halyun Jeong
Xiaowei Li
Y. Plan
Özgür Yilmaz
11
18
0
28 Jan 2020
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
11
143
0
13 Nov 2019
Convex Reconstruction of Structured Matrix Signals from Linear Measurements (I): Theoretical Results
Yuan Tian
12
2
0
19 Oct 2019
Universality in Learning from Linear Measurements
Ehsan Abbasi
Fariborz Salehi
B. Hassibi
11
22
0
20 Jun 2019
The Impact of Regularization on High-dimensional Logistic Regression
Fariborz Salehi
Ehsan Abbasi
B. Hassibi
51
99
0
10 Jun 2019
Low-Rank Tucker Approximation of a Tensor From Streaming Data
Yiming Sun
Yang Guo
Charlene Luo
J. Tropp
Madeleine Udell
15
71
0
24 Apr 2019
Fundamental Barriers to High-Dimensional Regression with Convex Penalties
Michael Celentano
Andrea Montanari
17
46
0
25 Mar 2019
Concentration of the Frobenius norm of generalized matrix inverses
Ivan Dokmanić
Rémi Gribonval
8
4
0
18 Oct 2018
Asymptotics for Sketching in Least Squares Regression
Edgar Dobriban
Sifan Liu
11
12
0
14 Oct 2018
The Generalized Lasso for Sub-gaussian Measurements with Dithered Quantization
Christos Thrampoulidis
A. S. Rawat
MQ
14
30
0
18 Jul 2018
A modern maximum-likelihood theory for high-dimensional logistic regression
Pragya Sur
Emmanuel J. Candes
13
285
0
19 Mar 2018
From Review to Rating: Exploring Dependency Measures for Text Classification
Sam Cunningham-Nelson
Mahsa Baktash
W. Boles
16
1
0
04 Sep 2017
Generalized notions of sparsity and restricted isometry property. Part II: Applications
Marius Junge
Kiryung Lee
10
2
0
28 Jun 2017
The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square
Pragya Sur
Yuxin Chen
Emmanuel J. Candès
19
79
0
05 Jun 2017
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
Jialei Wang
J. Lee
M. Mahdavi
Mladen Kolar
Nathan Srebro
13
50
0
10 Oct 2016
Random projections of random manifolds
Subhaneil Lahiri
P. Gao
Surya Ganguli
17
9
0
14 Jul 2016
Precise Error Analysis of Regularized M-estimators in High-dimensions
Christos Thrampoulidis
Ehsan Abbasi
B. Hassibi
16
216
0
23 Jan 2016
Near-Optimal Bounds for Binary Embeddings of Arbitrary Sets
Samet Oymak
Ben Recht
8
33
0
14 Dec 2015
Sharp Time--Data Tradeoffs for Linear Inverse Problems
Samet Oymak
Benjamin Recht
Mahdi Soltanolkotabi
19
88
0
16 Jul 2015
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
Adel Javanmard
Andrea Montanari
99
160
0
17 Jan 2013
1